An ideal \(P \) in a commutative ring \(R \) is prime if \(P \neq R \) and if \(\forall a, b \in R \):

\[
ab \in P \implies a \in P \text{ or } b \in P
\]

- \(P \subseteq R \) is prime \iff \(R/P \) is an integral domain
- Hence maximal ideals are prime.

But \(\langle x \rangle \) \((\mathbb{Z}[x])\) is prime and not maximal.

So maximal \(\implies \) prime.

Def. An integral domain in a P.I.D. (principal ideal domain) if every ideal is principal.

Def. An integral domain \(R \) has a division algorithm ("in a Euclidean domain") if \(\exists f : R \times R \to \mathbb{N} \) so that \(\forall a, b \in R, b \neq 0 \), \(\exists q, r \in R \) with \(a = qb + r \) and \((r = 0 \text{ or } s(r) < s(b)) \)

Examples: \(\mathbb{Z}, \mathbb{F}[x], \mathbb{Z}[i, \sqrt{-1}] = \text{Gaussian integers} \) have a division "algorithm."

Theorem 28.1. Every Euclidean domain is a P.I.D.

Proof. Let \(R \) be an integral domain with a division function \(s : R \times R \to \mathbb{N} \) and \(I \subseteq R \) an ideal.

If \(I = \{ 0 \} \) the zero ideal, there is nothing to prove. \(I = \langle 0 \rangle \).

Suppose \(I \neq 0 \). Consider

\[
S = \{ s(x) \mid x \in I \text{ and } x \neq 0 \}.
\]

By well-ordering \(\exists b \in I \) so that \(b \neq 0 \) and \(s(b) = \min(S) \)

Given \(a \in I \), \(\exists q, r \in R \) so that \(a = qb + r \) and

\[
r = 0 \text{ or } s(r) < s(b).
\]

Since \(c, b \in I \) and \(I \) is an ideal, \(r = a - qb \in I \).

Since \(s(r) < s(b) = \min S \), \(r \) has to be \(0 \).

\[
\Rightarrow a = qb \in \langle b \rangle \implies I \subseteq \langle b \rangle (\subseteq I).
\]
Definition: Let \(R \) be a commutative ring.
\(x \in R \) is irreducible iff \(x \neq 0 \) and \(x \) is not a unit and
\[x = ab \implies (a \text{ is a unit or } b \text{ is a unit}) \]
\(p \in R \) is prime iff \((p) \subset R \) is a prime ideal.

Lemma 28.2: \(p \in R \) is prime \(\iff \) \((p) \neq \text{not a unit and } p | ab \implies p | a \text{ or } p | b)\)

Proof: Note: \(x \in (p) \implies x = qp \) for some \(q \in R \implies p | x \).

Therefore: \((a, b \in (p) \implies [a \in (p) \lor b \in (p)]) \) if and only if
\[(p | ab \implies [p | a \text{ or } p | b]) \]
Also \((p) \neq R \implies p \text{ is not a unit} \]

Lemma 28.3: In \(R = \mathbb{Z}[(\sqrt{-5})] \) irreducibles need not be primes.

Proof: Consider \(N: \mathbb{Z}[(\sqrt{-5})] \to \mathbb{N} \)
\[N(a + b\sqrt{-5}) = (a + b\sqrt{-5})^2 = a^2 + 5b^2 \]
1. \(N(a + b\sqrt{-5}) = 0 \iff a^2 + 5b^2 = 0 \iff (a = 0 \text{ and } b = 0) \)
2. \(N(a + b\sqrt{-5}) = 1 \iff a^2 + 5b^2 = 1 \iff b = 0, a = \pm 1 \)
3. \(\forall u, v \in \mathbb{Z}[(\sqrt{-5})] \quad N(uv) = N(u)N(v) \).

Therefore: \(\forall u, v \in \mathbb{Z}[(\sqrt{-5})] \quad N(u)N(v) = N(uv) \)
\[\iff 1 = N(1) = N(u)N(v) \]
\[\iff N(u) = N(v) = 1 \]
\[\iff u = v = 1 \text{ or } u = v = -1 \]

4. The smallest values of \(N \) are
\(0 = N(0), 1 = N(\pm 1), 4 = N(2), 5 = N(\pm \sqrt{-5}) \)
and \(6 = N(\pm 1 \pm \sqrt{-5}) \)

Claim: \(2 \in \mathbb{Z}[(\sqrt{-5})] \) is irreducible.

Proof: If \(2 = uv \) for some \(u, v \in \mathbb{Z}[(\sqrt{-5})] \) then
\[4 = N(u)N(v) \]
\[a^2 + 5b^2 = 2 \] has no solutions if \(a, b \in \mathbb{Z} \).
\[N(u) = 1 \text{ and } N(v) = 4 \text{ or } (N(u) = 4 \text{ and } N(v) = 1)\]

\[N(u) = 1 \Rightarrow u \in a \text{ unit.}\]

Similarly \(N(v) = 1 \Rightarrow v \in a \text{ unit.}\)

\[\therefore \ 2 \in \mathbb{Z} \left[\sqrt{5} \right] \text{ is irreducible.}\]

Claim 2. \(2 \text{ is not prime in } \mathbb{Z} \left[\sqrt{5} \right] \)

Proof. \(2 \cdot 3 = 6 = 1 + 5 = (1 + \sqrt{5})(1 - \sqrt{5})\)

If \(2 | (1 + \sqrt{5}) \) \(\Rightarrow 3 | (1 + \sqrt{5}) \) \(\Rightarrow 3 \in \mathbb{Z} \left[\sqrt{5} \right] \text{ with } \)

\[1 + \sqrt{5} = 3q\]

\[\Rightarrow 6 = N(1 + \sqrt{5}) = N(2) N(q) = 4 N(q)\]

Since \(N(q) \in \mathbb{N}, \text{ this is impossible.}\)

Conclusion: \(2 \in \mathbb{Z} \left[\sqrt{5} \right] \text{ is irreducible and not prime.}\)

(\text{nonzero!})

Lemma 28.4 In an integral domain, primes are irreducibles.

Proof. We want to show: \(p \in \text{ a prime, } p \neq 0, \text{ and } p = ab\)

\(\Rightarrow a \text{ or } b \text{ are units.}\)

Suppose \(p = ab. \) Then \(p \mid (ab). \) Since \(p \) is prime \(p \mid a \) or \(p \mid b. \) Say \(p \mid a. \) Then \(a = qp \) for some \(q. \)

\[\Rightarrow p = ab = p q b\]

\[\Rightarrow p (1 - qb) = 0. \]

Since \(p \neq 0 \) and we're in an integral domain \(1 - qb = 0\)

\[\Rightarrow 1 = qb \Rightarrow b \in a \text{ unit.}\]

Similarly, \(p \mid b \Rightarrow a \in a \text{ unit.}\)

Lemma 28.5 Let \(R \) be a P.I.D. Then \(x \in R \) is irreducible

\[\Leftrightarrow x \in a \text{ (nonzero) prime.}\]

Proof. Suppose \(x \in \text{ a nonzero prime.} \) Then \(x \) is irreducible by 28.4.
Suppose x is irreducible.

We argue first that the ideal $\langle x \rangle$ is maximal.

Suppose $\langle x \rangle \subseteq I \subseteq R$ for some ideal I. Since R is a PID $I = \langle c \rangle$ for some $c \in R$. Since $x \in \langle x \rangle \subseteq \langle c \rangle$, $x = qc$ for some $q \in R$.

Since x is irreducible, either q is a unit (and then $c = q^{-1}x$, so $c \in \langle x \rangle$ so $I = \langle c \rangle \subseteq \langle x \rangle$ so $I = \langle x \rangle$) or c is a unit (and then $I = \langle c \rangle = R$).

$\Rightarrow \langle x \rangle$ is maximal.

Since $\langle x \rangle$ is maximal, $\langle x \rangle$ is prime (recall: $\langle x \rangle$ maximal $\Rightarrow R/\langle x \rangle$ is a field $\Rightarrow R/\langle x \rangle$ is integrally closed $\Rightarrow \langle x \rangle$ is prime).

$\Rightarrow x$ is prime.

In \mathbb{Z}, $\mathbb{F}(x)$, $\mathbb{Z}[F]$ irreducibles are nonzero primes.

Since \mathbb{Z}, $\mathbb{F}(x)$, $\mathbb{Z}[F]$ are Euclidean rings, hence PIDs.

In $\mathbb{Z}[\sqrt{-3}]$ not all irreducibles are primes.

Hence $\mathbb{Z}[\sqrt{-3}]$ is not a PID.

Corollary (of proof of 28.5) In a PID irreducibles define maximal ideals. Hence if R is a PID and $x \in R$ is irreducible, $R/\langle x \rangle$ is a field.