Last time: homomorphisms and unital homomorphism of rings

- degree of polynomials: \(\text{deg}(f \circ g) \leq \text{deg } f + \text{deg } g \)
- Substitution principle: \(\varphi: R \to R' \) (unital) ring homomorphism \(a \in R \), \(\exists ! \varphi(a)x' \) homomorphism \(\varphi_a: R[x] \to R' \)
 so that \(\varphi_a(\sum a_i \cdot x^i) = \sum \varphi(a_i) \cdot x^i. \)

Special cases: \(\varphi_a(\sum a_i x^i) = \sum a_i \varphi(x^i) \)

\[\begin{align*}
\varphi: R[x] \to R, & \quad \text{ev}_a(\sum a_i x^i) = \sum a_i x^i \quad \text{"evaluation at } x^a" \quad \text{\textendash} \\
\varphi: R \to S \text{ (unital) ring homomorphism, } a = y \in S[y] \to R' \\
\varphi_a: R[x] \to S[y], & \quad \varphi_a(\sum a_i x^i) = \sum \varphi(a_i) y^i.
\end{align*} \]

Definition. An ideal \(I \) in a ring \(R \) is a subgroup \(I \subseteq (R, +, 0) \) so that for \(r \in R \), \(a \in I \), \(r + a \in I \) and \(r - a \in I \).

\(\exists a \in \mathbb{Z} \) is an ideal: \(\forall r \in \mathbb{Z}, \forall i \in \mathbb{Z}, r \cdot i \in \mathbb{Z} \).

\(\sum a_i x^i \) \(\{0\} \), \(R \) are ideals in \(R \).

Definition. The kernel of a ring homomorphism \(f: R \to R' \) is \(\ker f = \{ r \in R \mid f(r) = 0 \} \).

Proposition 23.1. Let \(f: R \to R' \) be a ring homomorphism. Then \(\ker f \) is an ideal.

Proof. \(I = \ker f \) is a subgroup of \(R \) since \(f: (R, +, 0) \to (R', +, 0) \) is a group homomorphism. Moreover \(\forall r \in R, \forall i \in \mathbb{Z}, r \cdot i \in I \).

\(\sum a_i x^i \) \(\{0\} \) is an ideal in \(R \).

\(\text{Ex} \) \(\pi: \mathbb{Z} \to \mathbb{Z}_n \) is a ring homomorphism. \(n \mathbb{Z} = \ker \pi \) is an ideal in \(\mathbb{Z} \).

\(\text{Ex} \) \(\text{ev}_a: R[x] \to R, \text{ev}_a(\sum a_i x^i) = \sum a_i x^i, \text{ i.e. } p(x) \to p(a) \).
\(\ker(e_{x}) = \{ p(x) \in R[x] \mid p(x) = 0 \} \) is an ideal in \(R[x] \).
It's an ideal of polynomials that are zero at \(x \).

Definition: If \(p(x) = 0 \) we say \(x \) is a root of \(p(x) \).

Example: \(x + 1 \) is a root of \(p(x) = x^2 + 1 \)

Example: If \(p \) is prime, \(a^p = a \) for \(a \in Z_p \)
\(\Rightarrow \forall a \in Z_p \text{ is a root of } q(x) = x^p - x \).

Note: The function \(f: Z_p \rightarrow Z_p, \alpha \mapsto a^p - a \) is identically zero,
but \(q(x) = x^p - x \neq 0 \).

Lemma 23.2: Let \(I \subseteq R \) be an ideal. If \(1 \in I \), then \(I = R \).

Proof: If \(r \in R \), \(r = r \cdot 1 \in I \).

Corollary 23.3: Suppose \(I \subseteq R \) is an ideal and \(u \in I \) is a unit.
Then \(I = R \).

Proof: Since \(u \) is a unit, \(\forall v \in R, v \cdot u = 1 \). Since \(u \in I \)
\(1 = vu \in I \). By 23.2, \(I = R \).

Corollary 23.4: If \(F \) is a field and \(I \subseteq F \) is an ideal then
either \(I = \{0\} \) or \(I = F \).

Proof: Suppose \(I \subseteq F \) is an ideal and \(I \neq \{0\} \). Then \(\forall u \in I \)
\(\exists v \in F \) s.t. \(u \neq 0 \). Since \(F \) is a field and \(u \neq 0 \), \(\exists v \in F \) s.t. \(uv = 1 \).
\(\Rightarrow u \) is a unit. \(\Rightarrow I = F \).

Theorem 23.5: Let \(R \) be a ring and \(I \subseteq R \) an ideal. Then
the quotient group \((R/I, +, 0) \) has a well-defined multiplication given by
\((a + I) \cdot (b + I) = (ab) + I \)

With this multiplication \((R/I, +, \cdot, 0, 1 + I) \) is a ring.
Moreover \(\pi: R \rightarrow R/I \), \(\pi(a) = a+I \) is a (unital) ring homomorphism.

Sketch of proof:

1) We check that \(\pi \) is well-defined.

Suppose \(a+I = a'+I \), \(b+I = b'+I \).

We need to check that \((ab)+I = (a'b')+I \).

Since \(a+I = a'+I \), \(a = a'+i \) for some \(i \in I \).

Since \(b+I = b'+I \), \(b = b'+j \) for some \(j \in I \).

\[
ab - a'b' = (a+i)(b'+j) - a'b' = a'b' + ib + a'i + ij - a'b' = ib + a'i + ij - I.
\]

\[
\therefore \quad ob+I = a'b'+I.
\]

2) \((a+I), \quad ((b+I)+(c+I)) = (a+I), \quad (b+c)+I = (a+b+c)+I = (a+I) \cdot (b+I) + (a+I) \cdot (c+I)\]

Similarly,

\[
((a+I) + (b+I), \quad (c+I)) = (a+I) \cdot (c+I) + (b+I) \cdot (c+I).
\]

3) \((1+I), \quad (a+I) = 1 \cdot a+I = a+I = a \cdot 1 + I = (a+I)(1+I) = 1 \cdot R + I = 1 \cdot R / I.
\]

and so on.

Exercise:

Let \(\Phi : R \rightarrow S \) be a (unital) ring homomorphism. Then \(\Phi(1) \) is a subring of \(S \).

Theorem (1st isomorphism theorem):

Let \(\Phi : R \rightarrow S \) be a ring homomorphism, and \(I = \ker \Phi \).

Then \(\Phi: R/I \rightarrow S \), \(\Phi(a+I) = \Phi(a) \) is a well-defined injective ring homomorphism. In particular, \(R \rightarrow S \)

\[
\begin{array}{ccc}
R/I & \xrightarrow{\Phi} & S \\
\pi & \\ R/I & \rightarrow & \Phi(R)
\end{array}
\]
and \(\tilde{\varphi} : R/I \to R/\varphi(I) \) is an isomorphism.

Proof: We know that \(\tilde{\varphi} : R/I \to R, \tilde{\varphi}(a+I) = \varphi(a) \)

in a well-defined isomorphism of abelian groups.

Remains to check: \(\tilde{\varphi} \) preserves multiplication.

Now \(\tilde{\varphi}((a+I)(b+I)) = \tilde{\varphi}(ab+I) = \varphi(ab) = \varphi(a)\varphi(b) = \tilde{\varphi}(a+I)\tilde{\varphi}(b+I) \) \(\square \)

The inclusion \(f : IR \to C, f(a) = a + 0i \) \(\) is an injective, unital

ring homomorphism. By the substitution principle

\(\hat{f} : IR[x] \to C, \hat{f}(\sum_{j=0}^{n} a_j x^j) = \sum_{j=0}^{n} a_j (F_1)^j \) \(\) is a ring homomorphism

\(\hat{f}(a + bx) = a + bF_1. \Rightarrow \hat{f} \) \(\) is onto.

We'll show: ker \(\hat{f} = (x^2 + 1)IR[x] \)

\(= \langle x^2 + 1 \rangle IR[x] \)

1st isomorphism theorem \(\Rightarrow \)

\(C \cong IR[x] / \langle x^2 + 1 \rangle IR[x] \)

Exercise: Let \(\{ I_{a} \}_{a \in A} \) be a collection of ideals in a ring \(R \).

Then \(\bigcap_{a \in A} I_{a} \) is also an ideal in \(R \).

Consequence: Let \(R \) be a ring, \(S \subseteq R \) a set.

Let \(A - \{ I \subseteq R | I \) an ideal and \(S \subseteq I \). Then by exercise

\(\bigcap_{I \in S} A \equiv \bigcap_{I \subseteq R} I \) \(\) is an ideal in \(R \).

Note that \(\forall I \subseteq A, S \subseteq I \Rightarrow S \subseteq \bigcap_{I \in S} A. \)

1. \(\langle S \rangle - \{ \sum_{i} a_i = 0 \} A \) is the smallest ideal containing \(S \). We'll see: if \(R \) is commutative, \(a \in R \) then

\(\langle \{ a \} \rangle = a \langle 1 \rangle = \{ a \} \) for \(1 \in R \).