1 Let G be a group, $a \in G$.
 (i) Show that the map
 $$c_a : G \to G, \quad c_a(g) := aga^{-1}$$
 is a homomorphism.
 (ii) Show that c_a is an isomorphism.

2 Suppose a group G acts on a set X and $f : H \to G$ is a homomorphism.
 Define the map $*: H \times X \to X$ by
 $$(h, x) \mapsto h * x := f(h) \cdot x$$
 where \cdot denotes the action of G on X. Show that $*$ is an action of H on X.
 Hint: what do you need to check?

3 Let G be a group, $H < G$ a subgroup and $g \in G$ an element. Consider
 the inversion map
 $$\text{inv} : G \to G, \quad \text{inv}(g) = g^{-1}.$$
 Prove that $\text{inv}(gH) = Hg^{-1}$. Hint: $\text{inv}(H) \subset H$ (why?) and $\text{inv} : H \to H$
 is a bijection
 Prove that inv induces a bijection from the set of left cosets to the set of
 right cosets:
 $$\text{inv} : H \backslash G \to G/H.$$

4 Find all the elements in the subgroup of S_4 generated by the set $X = \{(12), (23)\}$. In other words what set is $\langle X \rangle$? Hint: id, $(12), (13), (12)(13)$
 are all in $\langle X \rangle$. Is there anything else?

5 Suppose G is a group, X is a set and $\varphi : G \to \text{Sym}(X)$ a homomorphism
 (as before $\text{Sym}(X)$ is the group of bijections of the set X). Prove that the map
 $$\alpha : G \times X \to X, \quad \alpha(g, x) := (\varphi(g))(x)$$
 is an action of G on X. In other words, prove that $(g, x) \mapsto g \cdot x := (\varphi(g))(x)$
 is an action.

6 Consider the map $\exp : \mathbb{R} \to \mathbb{C}^\times := \mathbb{C} \setminus \{0\}$, $\exp(\theta) = e^{i\theta}$. It’s a homomorphism of groups: the group operation on \mathbb{R} is $+$, the group operation on
 \mathbb{C}^\times is multiplication. What is the image of \exp? What is the kernel of \exp?
 What are the left cosets of $\ker(\exp)$ in \mathbb{R}?

7 Consider the action of \mathbb{Z} on \mathbb{R} given by
 $$n \cdot x := (-1)^n x.$$
 What are the orbits of this action? What is the stabilizer of $\pi \in \mathbb{R}$? What is the stabilizer of 0?