1. Let \(f : G \rightarrow H \) be a homomorphism between two groups and let \(L \) be a subgroup of \(H \). Prove that the preimage

\[
f^{-1}(L) := \{ g \in G \mid f(g) \in L \}
\]
is a subgroup of the group \(G \).

2. Is the subset \(H \) of the group \(GL(2, \mathbb{R}) \) consisting of two by two invertible matrices with integer entries a subgroup of \(GL(2, \mathbb{R}) \)? Explain/prove your answer.

3. Consider the matrices \(A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) and \(B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \). They are both elements of the group \(GL(2, \mathbb{R}) \). What are the subgroups \(\langle A \rangle \) and \(\langle B \rangle \) that they generate? In particular what sets do these subgroups consist of?

4. (a) Prove that the set

\[
T = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mid a, b, d \in \mathbb{R}, \; ad \neq 0 \right\}
\]
is a subgroup of \(GL(2, \mathbb{R}) \).

(b) Is the group \(T \) abelian (i.e., commutative)? Explain.

5. Let \(G \) be a group, \(a, b \in G \) two elements. Prove that

\[
(ab)^{-1} = b^{-1}a^{-1}.
\]

Hint: inverses are unique, and \((ab)b^{-1}a^{-1} = \ldots\).

6. Let \(G \) be a collection of function from \(\mathbb{R} \) to \(\mathbb{R} \) of the form

\[
f(x) = ax + b
\]
for some \(a, b \in \mathbb{R} \) with \(a \neq 0 \), the set of affine functions.

(a) Prove that \(G \) is a group under the composition of functions.

(b) Prove that the map \(\varphi : G \rightarrow GL(2, \mathbb{R}) \) defined by

\[
\varphi(ax + b) := \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}
\]
is an injective homomorphism.

7. Prove that the composite \(g \circ f : G \rightarrow L \) of two homomorphisms \(f : G \rightarrow H \) and \(g : H \rightarrow L \) is again a homomorphism. Prove that the identity map \(id_G : G \rightarrow G \) is a homomorphism.

8. Let \(G \times X \rightarrow X \) be an action of a group \(G \) on a set \(X \).
(a) Prove that for any $g \in G$ the map $\varphi_g : X \to X$ defined by $\varphi_g(x) := g \cdot x$ is invertible. Hint: show that $\varphi_{g^{-1}}$ is an inverse of φ_g.

(b) Prove that the map

$$\varphi : G \to \text{Sym}(X), \quad g \mapsto \varphi_g$$

is a homomorphism. Here as in the lectures $\text{Sym}(X)$ is the group of bijections of the set X.