last time: defined a group

Recall

A group \(G \) is a triple \((G, *, e)\) where

1) \(*: G \times G \rightarrow G \) is a binary operation

which is associative

2) \(e \in G \) is a distinct element (the identity) so that
\[a * e = e = e * a \quad \forall a \in G \]

3) \(\forall a \in G \) there is a (unique) \(a^{-1} \in G \)
\[a * a^{-1} = e = a^{-1} * a. \]

Examples \((\mathbb{Z}, +, 0)\), \((\mathbb{C}^*, \cdot, 1)\), \(GL(n, \mathbb{R})\)...

Another example \(X \) is a set

\[\text{Aut}(X) = \{ f: X \rightarrow X \mid f \text{ is invertible} \}, \]

binary operation is composition \(\circ \)

\[(f \circ g)(x) = f(g(x)) \quad \forall x \in X \]

identity element is \(\text{Id}_X: X \rightarrow X \), \(\text{Id}_X(x) = x \quad \forall x \in X \).

Proposition 1 (10)

Let \((G, *, e)\) be a group.

1) if \(\forall a \in G \) with \(a * e' = a \neq e \) then \(e' = e \).
2) inverses are unique
3) \((a^{-1})^{-1} = a \)
4) \(\forall n, m, a \in G \)
\[a_1 * (a_2 * f \quad (a_{n+1} * a_n) \ldots) = (a_1 * a_2) * (a_3 \ldots a_n) \]
e tc.
order of parentheses doesn't matter.

We proved (2). Last time. (4) is easy. Take \(a = e \).
Then \(e \cdot e = e \) by assumption.

(3): \(a \cdot a^{-1} = e = a^{-1} \cdot a = 1 \) is the inverse of \(a^{-1} \), ie \(a \cdot (a^{-1})^{-1} \) is the inverse of \(a \).

(4) read as text.

Def. A group \(G \) is _abelian (commutative)_ if \(a \cdot b = b \cdot a \) for all \(a, b \in G \).

Ex. \((\mathbb{Z}, +, 0)\) is abelian, \(GL(2, \mathbb{R})\) is not.

Def. Let \((G, \cdot), (H, *)\) be two groups. A map \(\varphi : G \to H \) is a _homo-morphism_ if \(\varphi(a \cdot b) = \varphi(a) * \varphi(b) \) for all \(a, b \in G \).

Ex. \((\mathbb{R}, *, 0) = (\mathbb{R}, +, 0)\) \((\mathbb{R}^*, *, 0) = (\mathbb{R} \setminus \{0\}, *, 1)\) \(\exp : \mathbb{R} \to \mathbb{R}^* \), \(\exp(x) = e^x \) is a homomorphism since \(\exp(x+y) = e^{x+y} = e^x \cdot e^y = \exp(x) \cdot \exp(y) \).

Ex. \(\det : GL(n, \mathbb{R}) \to \mathbb{R}^* \) is a homomorphism since \(\det(AB) = \det(A) \cdot \det(B) \).

Ex. \(\log : (0, \infty) \to (\mathbb{R}, +, 0) \) is a homomorphism since \(\log(ab) = \log a + \log b \).
\[\pi : (\mathbb{Z}, +, 0) \rightarrow (\mathbb{Z}_n, +, 101) \]
\[\pi(a) = [a] \]

A homomorphism:
\[\pi(a + b) = [a + b] = [a] + [b] = \pi(a) + \pi(b) \]

*For any group \(G \), \(\text{Id}_G : G \rightarrow G \), \(\text{Id}_G (a) = a \)

is a homomorphism.

Def. A homomorphism \(\varphi : G \rightarrow H \) is an isomorphism if it is invertible: \(\exists \) a homomorphism \(\psi : H \rightarrow G \)

such that \(\psi \circ \varphi = \text{Id}_G \), \(\varphi \circ \psi = \text{Id}_H \).

Remark: This is different from the definition of the text.

Text requires \(\varphi \) to be a bijection.

So one needs to prove: if \(\varphi : G \rightarrow H \) is a homomorphism and a bijection then \(\varphi^{-1} : H \rightarrow G \) preserves multiplication.

Here is a proof: we need to show \(\forall x, y \in H \)

\[\varphi^{-1}(xy) = \varphi^{-1}(x) \varphi^{-1}(y) \]

Now \(\psi(\varphi^{-1}(x) \varphi^{-1}(y)) = \psi(\varphi^{-1}(x)) \cdot \psi(\varphi^{-1}(y)) \) since \(\varphi \) preserves mult.

\[= xy = \psi(\varphi^{-1}(xy)) \]

Since \(\varphi \) is a bijection,

\[\varphi^{-1}(x) \cdot \varphi^{-1}(y) = \varphi^{-1}(xy) \]

Ex. \(G = \{ \pm 1 \} \), group operation is multiplication.

Define \(\varphi : \mathbb{Z}/2 \rightarrow G \) by

\[\varphi([k]) = (-1)^k \]
Note: if \(k \equiv l \pmod{2} \), \(k - l \) is even, \(\Rightarrow (-1)^{k-l} = 1 \)
\(\Rightarrow (-1)^k = (-1)^l \)
\(\Rightarrow \Phi \) is well-defined.

Also, \(\Phi \) is onto, since \(\Phi([0]) = 1 \), \(\Phi([1]) = -1 \).

Finally if \(\Phi([k]) = \Phi([l]) \),

\((-1)^k = (-1)^l \)
\(\Rightarrow (-1)^{k-l} = 1 \)
\(\Rightarrow k - l \) is even
\(\Rightarrow k \equiv l \pmod{2} \)
\(\Rightarrow [k] = [l] \) in \(\mathbb{Z}/2 \).

Conclusion \(\Phi: \mathbb{Z}/2 \rightarrow \{ \pm 1 \} \) is an isomorphism.

Example

\(\log: (0, \infty) \rightarrow (\mathbb{R}, +) \) is an isomorphism.

Reason \(\exp(\log(x)) = x + x \in (0, \infty) \)
\(\log(\exp(y)) = y \quad \forall y \in \mathbb{R} \).

Lemma 6.2 Suppose \(\Phi: G \rightarrow H \) is a homomorphism.

Then \(\Phi(e_G) = e_H \).

Proof
\(e_G \cdot e_G = e_G \)
\(\Rightarrow \Phi(e_G) = \Phi(e_G \cdot e_G) = \Phi(e_G) \cdot \Phi(e_G) \)
\(\Rightarrow e_H = (\Phi(e_G))^{-1} \Phi(e_G) = \Phi(e_G)^{-1} \Phi(e_G) = e_H \cdot \Phi(e_G) = \Phi(e_G) \).

Example

\(\Phi: \mathbb{Z} \rightarrow \{ \pm 1 \}, \quad \Phi(n) = (-1)^n \) is a homomorphism.

\(\Phi(n + m) = (-1)^{n+m} = (-1)^n \cdot (-1)^m = \Phi(n) \cdot \Phi(m) \)
\(\Phi \) is onto but not 1-1.
An action of a group G on a set A is a map $\alpha: G \times A \to A$, $\alpha(g, a) = g \cdot a$ so that

1) $e \cdot a = a \quad \forall a \in G$

2) $g_1 \cdot (g_2 \cdot a) = (g_1 g_2) \cdot a \quad \forall g_1, g_2 \in G, a \in A$

Example $G = GL(2, \mathbb{R})$ = invertible 2×2 matrices acts on \mathbb{R}^2

$$
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
x \\
y
\end{pmatrix} =
\begin{pmatrix}
a_{11}x + a_{12}y \\
a_{21}x + a_{22}y
\end{pmatrix}
$$

It's an action since

(i) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$

(ii) $\forall A, B \in GL(2, \mathbb{R}), \forall \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2$

$$
A \left(B \begin{pmatrix} x \\ y \end{pmatrix} \right) = (AB)\begin{pmatrix} x \\ y \end{pmatrix}
$$

Example $(\mathbb{C}, 0, 1)$ acts on \mathbb{C} by

$$
\lambda \cdot z = \lambda z \quad \text{multi of complex numbers}
$$

It's an action since

$$
1 \cdot z = z \quad \forall z
$$

$$
\lambda \cdot (\mu \cdot z) = (\lambda \mu) z \quad \forall \lambda, \mu \in \mathbb{C}
$$