1. Prove that the ideal $I = (2, 1 - \sqrt{-5})$ in the ring $\mathbb{Z}[\sqrt{-5}]$ is maximal. Prove that it is not principal.

2. Recall that every ideal $I \subset \mathbb{Z}$ is principal. Consider the ideals $6\mathbb{Z}$ and $8\mathbb{Z}$ in the ring \mathbb{Z}. Find $m, n, k \in \mathbb{Z}$ so that

 $$m\mathbb{Z} = 8\mathbb{Z} \cap 6\mathbb{Z}, \quad n\mathbb{Z} = 8\mathbb{Z} + 6\mathbb{Z}, \quad k\mathbb{Z} = (8\mathbb{Z})(6\mathbb{Z}).$$

3. Let R be a ring with a subring A and let $I \subset R$ be an ideal. Prove that

 1. $A + I := \{a + i \in R \mid a \in A, i \in I\}$ is a subring of R.
 2. $A \cap I$ is an ideal in A.
 3. I is an ideal in $A + I$.
 4. $(A + I)/I$ is isomorphic to $A/(A \cap I)$.

4. Let R be a ring, $K, I \subset R$ ideals with $K \subset I$. Prove that $I/K := \{i + K \mid i \in I\}$ is an ideal in R/K and that $(R/K)/(I/K)$ is isomorphic to R/I.

5. Let F be a field and $p(x) \in F[x]$ be a polynomial of degree 3. Prove that p is irreducible if and only if p has no roots in F.

6. Suppose a ring R is a UFD and $\{a_i\}_{i=1}^{\infty}$ is a sequence of elements in R with $(a_i) \subset (a_{i+1})$ for all i. Prove that the increasing chain of ideals $(a_1) \subset (a_2) \subset \ldots$ eventually stabilizes. That is, show that there is $m \in \mathbb{N}$ so that $(a_{m+k}) = (a_m)$ for all $k \in \mathbb{N}$. Hint: write a_1 as a product of irreducibles/primes. $(a_1) \subset (a_n)$ means that $a_n | a_1$. Therefore ...

7. Prove that the quotient ring $\mathbb{R}[x]/(x^2 + 2)$ is isomorphic to the field of complex numbers.