Let \(U \subseteq \mathbb{R}^n \) be open. A \(k \)-form \(\eta \in \Omega^k(U) \) is closed if \(d\eta = 0 \); it is exact if \(\eta = df \) for some \(f \in \Omega^{k-1}(U) \). By convention \(f \in \Omega^0(U) \) is exact \(\iff f = 0 \).

#1 Prove that exact forms are closed.

#2 Prove that if \(U \) is connected and \(f \in \Omega^0(U) \) is closed then \(f \) is constant.

#3. Prove that \(\alpha = \frac{y}{x^2+y^2} \, dx - \frac{x}{x^2+y^2} \, dy \in \Omega^1(\mathbb{R}^2 \setminus \{(0,0)\}) \) is closed but not exact. Hint: (a) Prove \(\int_{S^1} \alpha \neq 0 \) where \(S^1 \equiv \{ (x,y) \in \mathbb{R}^2 \mid x^2+y^2 = 1 \} \) with any parameterization (say \(y(\theta) = (\cos \theta, \sin \theta), 0 \leq \theta \leq 2\pi \)). (b) Prove that for any \(f \in \Omega^0(\mathbb{R}^2 \setminus \{(0,0)\}) \), \(\int_{S^1} df = 0 \).

#4 Prove that if \(\alpha, \beta \) are closed, then so is \(\alpha \wedge \beta \).

#5 Prove that if \(\alpha \) is closed and \(\beta \) is exact then \(\alpha \wedge \beta \) is exact. Hint: Suppose \(\beta = df \). Then \(d(\alpha \wedge \beta) = \ldots \).

#6 Let \(F: V \to U \) be a \(C^\infty \) map \((V \subseteq \mathbb{R}^k \) open). Prove that if \(\alpha \in \Omega^k(U) \) is closed, then \(F^*\alpha \) is closed; and if \(\alpha \) is exact then \(F^*\alpha \) is exact.