Last time: monotone sequences

- if \(\{S_n\} \) is increasing and bounded above, \(\{S_n\} \) converges
- if \(\{S_n\} \) is increasing and not bounded above, \(\lim S_n = +\infty \)

Similarly, if \(\{S_n\} \) is decreasing then
- \(\{S_n\} \) converges if \(\{S_n\} \) bounded below
- diverges to \(-\infty\) if \(\{S_n\} \) is not bounded below

- \(\limsup, \liminf \)

Big idea: if \(\{S_n\} \) is a sequence then
\[
V_n = \sup \{ S_k \mid k \geq n \} \quad \text{are monotone (if exist)}
\]
\[
U_n = \inf \{ S_k \mid k \geq n \}
\]

So we get
\[
\limsup S_n \leq \lim V_n \leq \liminf S_n \leq \lim U_n.
\]

These always exist (or are \(+\infty, -\infty\) resp.)

Remark
\[
\inf \{ S_k \mid k \geq n \} \leq S_{n+1} \leq \sup \{ S_k \mid k \geq n \}
\]
for all \(n \).

Theorem 10.7 Let \(\{S_n\} \in \mathbb{R} \) be a sequence

(i) If \(\{S_n\} \) converges (or diverges to \(+\infty\), or diverges to \(-\infty\))
then \(\lim \inf S_n = \lim S_n = \lim \sup S_n \)

(ii) If \(\lim \inf S_n = \lim \sup S_n \) then \(\lim S_n \) exists
(as a number or \(+\infty\) and
\[
\lim \inf S_n = \lim S_n = \lim \sup S_n
\]
Proof. We consider the finite case only: \(\limsup S_n, \liminf S_n \neq \pm \infty \).

(i) Suppose \(\lim S_n = L \). Then \(\forall \varepsilon > 0 \) \(\exists N \) so that
\[
\forall n > N, \quad |S_n - L| < \frac{\varepsilon}{2}
\]
Let \(V_M = \sup \{ S_n | n > M \} \).

Claim: \(\forall M \geq N, \quad |V_M - L| < \varepsilon \)

Proof of claim: for \(n > N \)
\[
|S_n - L| < \frac{\varepsilon}{2}
\]
\[
\Rightarrow L - \frac{\varepsilon}{2} < S_n < L + \frac{\varepsilon}{2}
\]
\[
\Rightarrow L - \frac{\varepsilon}{2} \text{ is not an upper bound of } \{ S_n | n > M \} \quad \forall M \geq N
\]
\[
L + \frac{\varepsilon}{2} \text{ is an upper bound of } \{ S_n | n > M(\forall M \geq N)
\]
\[
\Rightarrow (L - \frac{\varepsilon}{2})L - \frac{\varepsilon}{2} < \sup \{ S_n | n > M \} \leq L + \frac{\varepsilon}{2} < L + \varepsilon
\]
\[
\Rightarrow |V_M - L| < \varepsilon.
\]

\(\therefore \quad \limsup S_n = \lim_{M \to \infty} V_M = L \).

Similarly \(\liminf S_n = \lim_{M \to \infty} \inf \{ S_n | n > M \} = L \).

(ii) Let \(V_M = \sup \{ S_n | n > M \}, \quad U_M = \inf \{ S_n | n > M \} \)

Then \(\forall n > M \)
\[
U_M \leq S_n \leq V_M
\]

Since \(\liminf S_n = \limsup S_n = L \neq \pm \infty \)

Thus \(\forall \varepsilon > 0 \) \(\exists M \) \(\forall n > M \)
\[
|V_M - L| < \varepsilon \quad \text{and} \quad |U_M - L| < \varepsilon
\]
\[
\Rightarrow L - \varepsilon < \inf S_n < S_n < V_M < L + \varepsilon \quad \forall n > M
\]
\[
\Rightarrow L - \varepsilon < S_n < L + \varepsilon \quad \forall n > M
\]
\[
\Rightarrow |S_n - L| < \varepsilon
\]
\[
\Rightarrow \lim_{n \to \infty} S_n = L.
\]

\(\therefore \quad S_n = (-1)^n \quad V_M = \sup \{ (-1)^n | n > M \} = +1 \)
\[
U_M = \inf \{ (-1)^n | n > M \} = -1
\]
\[
\Rightarrow \lim \inf (-1)^n = -1 \neq 1 = \lim \sup (-1)^n
\]
\[\lim_{n \to \infty} (-1)^n \text{ does not exist.} \]

Cauchy sequences.

Definition A sequence \(\{s_n\} \) of real numbers is Cauchy if \(\forall \varepsilon > 0 \ \exists N \text{ so that} \]
\[n, m > N \implies |s_n - s_m| < \varepsilon. \]

Why the definition?

1) Theorem 10.11 A sequence is Cauchy \iff it converges.

\[\text{the definition provides another way to prove/check that} \]
\[\text{a sequence converges without knowing what it converges to} \]

2) One can define/construct \(\mathbb{R} \) out of \(\mathbb{Q} \) as

equivalence classes of Cauchy sequences in \(\mathbb{Q} \).

Proof of 10.11

(\(\Rightarrow \)) Suppose \(\lim_{n \to \infty} s_n = L \). Then \(\forall \varepsilon > 0 \ \exists N \text{ so that} \]
\[n > N \implies |s_n - L| < \frac{\varepsilon}{2}. \]

\[\implies \forall n, m > N \]
\[|s_n - s_m| = |s_n - L + L - s_m| \leq |s_n - L| + |L - s_m| \]
\[< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \]

(\(\Leftarrow \)) Suppose \(\{s_n\} \) is a Cauchy sequence.

We first prove

Lemma 10.10 Cauchy sequences are bounded.

\[\text{Proof: let } \{s_n\} \text{ be a Cauchy sequence.} \]

Then \(\exists N \in \mathbb{N} \)
\[n, m > N \implies |s_n - s_m| < 1 \]
\[\implies \forall m > N \]
\[|s_n - s_m| < 1 \]
\[|S_n| \leq |S_n - S_m| + |S_m| < 1 + |S_n| \quad \forall m > N. \]

\[|S_n| < \max \{|S_n|, |S_{n+1}|\}. \]

Now we argue: \(|S_n|\) Cauchy \(\Rightarrow\) \(\lim \sup S_n = \lim \inf S_n\)

We'll do it next time...