To do analysis we need
- natural numbers \(\mathbb{N} = \{1, 2, 3, \ldots\} \), a.k.a. positive integers
- integers \(\mathbb{Z} = \{0, 1, -1, 2, -2, \ldots\} \)
- rational numbers \(\mathbb{Q} = \{\frac{p}{q} | p, q \in \mathbb{Z}, q \neq 0\} \)
- real numbers \(\mathbb{R} \)

One can construct \(\mathbb{N} \) using finite sets + set theory
- construct \(\mathbb{Z} \) out of \(\mathbb{N} \) + algebra
- construct \(\mathbb{Q} \) out of \(\mathbb{Z} \) + algebra
- construct \(\mathbb{R} \) out of \(\mathbb{Q} \) + metric topology/analysis

Alternatively (this is what the textbook does)
One writes down the characteristic properties of \(\mathbb{N} \)
(Peano axioms)

First, a definition
(Given a natural number \(n \) we call \(n+1 \) its successor)

<table>
<thead>
<tr>
<th>Successor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuition: start with 1; it has the successor 2, which has the successor 3, ... keep on going; get all natural numbers this way</td>
</tr>
</tbody>
</table>

Peano axioms for \(\mathbb{N} \)

\(N_1 \) 1 belongs to \(\mathbb{N} \)
\(N_2 \) If \(n \) belongs to \(\mathbb{N} \) its successor \(n+1 \) belongs to \(\mathbb{N} \)
\(N_3 \) \(1 \) is not a successor of any natural number: \(\forall n \in \mathbb{N} \) so that \(n+1 \neq 1 \)
N4. If $n+1 = m+1$ then $n = m$.

N5. If $S \subseteq \mathbb{N}$ a subset with (a) $1 \in S$ and (b) $n \in S \implies n+1 \in S$ then $S = \mathbb{N}$.

Comment: One can use N1-N5 to construct/define $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ (addition of positive numbers).

The textbook and we won't do it.

Comment 2. Axiom/property N5: "*Induction*"

Recall a typical formulation:

- Suppose that for each $n \in \mathbb{N}$ we have a statement P_n.
- Moreover suppose that

 (Ii) P_1 is true

 (Iii) if P_n is true then P_{n+1} is true (i.e., $P_n \implies P_{n+1}$)

- Conclusion: P_n is true for all n.

Example P_n: $| \sin nx | \leq n | \sin x |$ for all $x \in \mathbb{R}$

Is P_n true for all n?

\(P_1\): $| \sin 1 \cdot x | \leq 1 \cdot | \sin x |$ \quad \text{yes.}

\(P_n \implies P_{n+1}\):

\[| \sin (n+1) x | = (| \sin (nx + x) | = | \sin nx \cos x + \cos nx \sin x | \leq | \sin nx \cos x | + | \cos nx \sin x | \]

\[= (| \sin nx | \cdot | \cos x | + | \cos nx | \cdot | \sin x |) \leq n | \sin x | + | \sin x | \]

\[\leq | \sin nx | + | \sin x | \leq n | \sin x | + | \sin x | \]

\[\implies \leq (n+1) | \sin x |. \quad \text{So yes.} \]

Conclusion: $| \sin nx | \leq n | \sin x |$ for all n.
Example 6 \mid 7^n - 1 for all n \in \mathbb{N}.

Proof \(P_1\) 6 \mid (7^1 - 1) \checkmark

\((P_n \lor P_{n+1})\) Suppose 6 \mid (7^n - 1). Then

\[7^{n+1} - 1 = 7 \cdot 7^n - 1 = (6+1)7^n - 1 = 6 \cdot 7^n + (7^n - 1)\]

Since 6 \mid 6 \cdot 7^n and since 6 \mid (7^n - 1) by assumption

6 \mid (6 \cdot 7^n + (7^n - 1)) = 7^{n+1} - 1. So \(P_n \lor P_{n+1}\)

Conclusion 6 \mid 7^k - 1 for all k \in \mathbb{N}.

Why is \(\mathbb{N}\) “better” than \(\mathbb{N}\)?

Both sets have an operation + which is associative. In \(\mathbb{Z}\) an equation

\[a + x = b\]

always has a solution: \(x = b + (-a)\)

(In \(\mathbb{N}\) such an \(x\) need not exist: \(\# x \in \mathbb{N}\),

\[4 + x = 2\]

Four properties of +: \(\mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}\).

\[A_1\quad a + (b + c) = (a + b) + c\]

for all \(a, b, c \in \mathbb{Z}\)

\[A_2\quad a + b = b + a\]

\[A_3\quad \exists 0\] so that \(0 + n = n = n + 0\) for all \(n \in \mathbb{Z}\).
For each $a \in \mathbb{Z}$ there is be \mathbb{Z} so that $a + b = 0$.

(equivalently: for equation $a + x = 0$ has a solution
One usually writes $-a$ for such b.

Comments 1) A1 and A2 hold for N; A3 and A4 do not.

2) If S is a set with an operation $+: S \times S \rightarrow S$

satisfying A1, A2, A3, A4, S is called an **abelian group**.

So A1-A4 say: "\mathbb{Z}, $+$, 0) is an abelian group"

There are many more abelian groups:

$(\mathbb{Q}, +, 0)$, $(\mathbb{R}, +, 0)$ are also abelian groups.

N and \mathbb{Z} have another operation \cdot (times).

It "plays well" with addition. Here are the properties of \cdot:

\[M_1 \] $a \cdot (bc) = (ab) \cdot c \quad \forall a, b, c$

\[M_2 \] $a \cdot b = b \cdot a \quad \forall a, b$

\[M_3 \] There is 1 so that $1 \cdot a = a$ for all a.

\[DL \] $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Comment: M1, M2, M3, DL (together with A1-A4) say:

"\mathbb{Z} is a commutative ring"

More pedantically:

"$(\mathbb{Z}, +, 0, \cdot, 1)$ is a commutative ring"
However in \(\mathbb{Z} \), for \(a \neq 1 \):
\[
a \cdot x = 1
\]
has no solutions. Thus \(\mathbb{Q} \) and \(\mathbb{R} \) are "better".

For any \(a \neq 0 \), \(\exists x \) so that \(ax = 1 \).

Comments: Such solution \(x \) is usually denoted by \(a^{-1} \).

- A commutative ring \((\mathbb{R}, +, 0, \cdot)\) so that
- \(M_4 \) also holds is called a field.

Examples: \(\mathbb{Q}, \mathbb{R} \) are fields, \(\mathbb{Z} \) is not.

Why is \(\mathbb{Q} \) "better" than \(\mathbb{R} \)?

Proposition The equation \(x^2 = 2 \) has no solutions in \(\mathbb{Q} \).

Comments: We'll see later that it does have real solutions; they are called \(\pm \sqrt{2} \).

- Our proof uses the following property of 2:

 \[(*)\]
 \[
 \text{If } 2 \text{ divides } n \cdot m \ (n, m \in \mathbb{Z}) \text{ then either } 2 \text{ divides } n \text{ or } 2 \text{ divides } m.
 \]

Proof Suppose \(\frac{p}{q} \in \mathbb{Q} \) solves \(x^2 = 2 \), where \(p, q \in \mathbb{Z} \). May assume: \(p \) and \(q \) are relatively prime, i.e., no common factors.
Then \(\left(\frac{p}{q} \right)^2 = 2 \Rightarrow p^2 = 2q^2 \)

\[\Rightarrow 2 \mid p^2 = p \cdot p \Rightarrow 2 \mid p \text{ or } 2 \mid q \text{ i.e. } 2 \mid p. \]

\[\Rightarrow p = 2n \text{ for some } n \in \mathbb{N}. \]

\[\Rightarrow (2n)^2 = 2q^2 \]

\[\Rightarrow 2n^2 = q^2 \]

\[\Rightarrow 2 \mid q^2 \quad (\ast) \quad 2 \mid q. \]

Contradiction: We assumed \(p \neq q \) have no common factors.

Conclusion: There is no \(\frac{p}{q} \in \mathbb{Q} \) so that \(\left(\frac{p}{q} \right)^2 = 2 \).