1 Let S be a compact regular surface, $q \in \mathbb{R}^3$ a point in space and $p \in S$ a point on S close to q (so that for all other $x \in S$ we have $||x-q|| \geq ||p-q||$). Prove that $q-p$ is perpendicular to the tangent plane T_pS to S at p.

2 Let S be a compact regular surface. Show that the Gauss map $N : S \to S^2$ is onto. Hint: for a point $p \in S^2$ consider the function $f_p : S \to \mathbb{R}$ defined by $f_p(q) = \langle p, q \rangle$. The function f_p has a critical point on S (why?). What happens at this critical point?

3 Show that the surface S parametrized by
\[F(r, \theta) = (\theta, r \sin \theta, -r \cos \theta), \]
with $r > 0$, is minimal. [In the original version the first coordinate was r, not θ. So the surface was a cone, which is not minimal.]