1. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with $T(1,0) = (4,3)$ and $T(0,1) = (-2,-1)$. Find the eigenvalues and eigenvectors of T. Are the eigenvectors orthogonal to each other?

2. Let S be an oriented surface and $p \in S$ a point. Denote the normal curvature of S at p in the direction of $X \in T_p S$, $||X|| = 1$, by $k(X)$. That is, $k(X) := II_p(X,X)$. We thus get a map $k : \{X \in T_p S \mid ||X|| = 1\} \to \mathbb{R}$. Show that the maximum and minimum values of k are principal curvatures. Hint: Euler’s formula: if X_1, X_2 are principal curvature directions, and $X = \cos \varphi X_1 + \sin \varphi X_2$ then $k(X) = \ldots$.

3. Let S be the saddle $z = x^2 - y^2$. Find the normal curvature $k(1/\sqrt{2},1/\sqrt{2},0)$ to S at the point $p = (0,0,0)$ (same notation as in problem 2).

4. Consider a curve $c(t) = (g(t), h(t))$ in the xy-plane with no self-intersections and with $h(t) > 0$ for all t. Rotating this curve around the x axis in 3-space gives rise to a surface of revolution S. Its parametrization is given by $F(u,v) = (g(u), h(u) \cos v, h(u) \sin v)$, where we should either assume that $v \in (0,2\pi)$ or that $v \in (-\pi, \pi)$.

 a. Show that $N(u,v) = (h'(u), -g'(u) \cos v, -g'(u) \sin v) / \sqrt{(g'(u))^2 + (h'(u))^2}$ is a unit normal field to the surface S.

 b. Show that the first fundamental form of S with in the coordinates given by the parametrization above is $((g')^2 + (h')^2) \, du \otimes du + h^2 \, dv \otimes dv$ and the second fundamental form is

 $$\frac{(g''h' - h''g')}{\sqrt{(g')^2 + (h')^2}} \, du \otimes du + \frac{hg'}{\sqrt{(g')^2 + (h')^2}} \, dv \otimes dv.$$

 c. Show that the Gauss curvature is

 $$K = \frac{g'(g''h' - h''g')}{{h((g')^2 + (h')^2)}}.$$

 d. Show that $\frac{\partial F}{\partial u}$ and $\frac{\partial F}{\partial v}$ are eigenvectors of the Weingarten map. What are the lines of curvature? Hint: you have already computed the first and second fundamental forms in coordinates u, v. Therefore you should be able to reconstruct the matrix for the Weingarten map from the matrices for the first and second forms.