1. Consider the parametrization of the sphere given by

\[F(\theta, \varphi) = (R \sin \varphi \cos \theta, R \sin \varphi \sin \theta, R \cos \varphi). \]

Show that the first fundamental form with respect to this parametrization is

\[R^2 \sin^2 \varphi \, d\theta \otimes d\theta + R^2 \, d\varphi \otimes d\varphi. \]

2. Recall that the graph of a function \(f(x, y) \) can be parametrized by

\[F(x, y) = (x, y, f(x, y)). \]

Show that the first fundamental form with respect to this parametrization is

\[(1 + \left(\frac{\partial f}{\partial x}\right)^2) \, dx \otimes dx + \frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \, dx \otimes dy + \frac{\partial f}{\partial y} \frac{\partial f}{\partial x} \, dy \otimes dx + (1 + \left(\frac{\partial f}{\partial x}\right)^2) \, dy \otimes dy \]

3. As in problem 2 above, let \(S \) be the graph of a function \(f(x, y) \). Compute the unit normal \(N \) to the surface \(S \) in terms of the partial derivatives of \(f \).

4. For each of the following surfaces \(S \) find the unit normal map (also called the Gauss map)

\[N : S \to S^2. \]

In particular describe the image \(N(S) \) in \(S^2 \).

a. \(S \) is the cone minus the origin \(\{(x, y, z) \mid z^2 = x^2 + y^2, (x, y, z) \neq (0, 0, 0) \} \). What happens as you approach the origin?

b. \(S \) is the plane \(\{(x, y, z) \mid x + y + z = 0\} \).

c. \(S \) is the sphere \(\{(x, y, z) \mid (x - 1)^2 + y^2 + (z + 2)^2 = 1\} \).

d. \(S \) is the saddle \(\{(x, y, z) \mid z = xy\} \).