Given a regular space curve $c : I \to \mathbb{R}^3$ it is common to refer to the collection κ, τ, v, n, b (where κ is curvature, τ is torsion, v is velocity, n unit normal and b unit binormal) as the Frenet apparatus.

1. Compute the Frenet apparatus κ, τ, v, n, b for the unit speed curve

 \[c(t) = \left(\frac{4}{5} \cos t, 1 - \sin t, -\frac{3}{5} \cos t \right). \]

 Show that the curve is a circle; find its center and radius.

2. Consider the curve

 \[\beta(s) = \left(\frac{(1 + s)^{3/2}}{3}, \frac{(1 - s)^{3/2}}{3}, \frac{s}{\sqrt{2}} \right) \]

 defined on the interval $I = (-1, 1)$. Show that β has unit speed, and compute its Frenet apparatus.

3. Let c be a unit speed curve with curvature $\kappa > 0$ and nonzero torsion τ.
 (a) Show that if c lies on a sphere with center w and radius r then

 \[c - w = -\rho n - \frac{d\rho}{dt} \sigma b, \]

 where n is the unit normal, b the binormal, $\rho = 1/\kappa$ and $\sigma = 1/\tau$. Conclude that $r^2 = \rho^2 + \left(\frac{d\rho}{dt} \sigma \right)^2$.

 (b) Conversely, if $\rho^2 + \left(\frac{d\rho}{dt} \sigma \right)^2$ is a constant, call it r^2, and $\frac{d\rho}{dt} \neq 0$, show that the curve lies on a sphere of radius r. Hint: show that $\frac{d}{dt} \left(c + \rho n + \frac{d\rho}{dt} \sigma b \right) = \vec{0}$.

4. Compute the Frenet apparatus for the curve

 \[c(t) = (3t - t^2, 3t^2, 3t + t^3). \]

 Caution: this is not a unit speed curve.