Last time:

We defined a vector space V to be finite dimensional if (and only if) there is a finite set \(\{v_1, \ldots, v_m\} \subseteq V \), which forms a basis of V.

That is:

\[
V \text{ is finite dimensional } \iff V \text{ has a finite basis.}
\]

We proved:

Thm 1. If V is finite dimensional then any basis has the same number of elements as any other basis.

We therefore can define the dimension of V to be the number of elements in a basis of V.

We write \(\dim V = \# \text{ of elements in a basis of V} \).

Ex: \(1, x, x^2, \ldots, x^n \) is a basis of \(\mathbb{R}^n \).

\(\Rightarrow \dim \mathbb{R}^n = n+1 \).

Compare this Thm with Prop 3.3 on p.49 of text.

(There the assumption that \(\dim V \) is finite is left out.)

Prop 2.8 (p.10): Let V be a vector space. Suppose \(S = \{v_1, \ldots, v_m\} \) spans V. Then there is a subset \(S' \) of \(S \) which forms a basis of V.

Proof: If \(S \) is linearly independent, we're done.

Otherwise one of the \(v_i \)'s is a linear combination of the rest. Say

\[
v_m = \sum_{i=1}^{m-1} \alpha_i v_i \quad \text{for some } \alpha_i \in \mathbb{F}.
\]

If \(x = a_1 v_1 + \ldots + a_m v_m \), then

\[
x = a_1 v_1 + \ldots + a_{m-1} v_{m-1} + a_m (\sum_{i=1}^{m-1} \alpha_i v_i)
\]
\[(a_1 + a_m x_1) v_1 + \ldots + (a_{m-1} + a_m x_{m-1}) v_{m-1} \]

\[\Rightarrow S' = \{ v_1, \ldots, v_{m-1} \} \text{ still spans } V \]

If \(S' \) is linearly independent, we're done — it's a basis.

Otherwise, proceed as before.

At every step we get a smaller set that spans \(V \). The process stops when we're left with a basis.

Since there are only \(m \) vectors in \(S \), the process cannot go on for more than \(m \) steps.

\[\square \]

Consequences:

1. If \(v_1, \ldots, v_m \) spans \(V \), then \(m \geq \dim V \). (cf. 3.5 p. 49)
2. \(V \) in finite dimensional \(\Rightarrow \) \(V \) is spanned by a finite set.
 - (cf. prop 5.1, p. 54)
 - **Proof** (\(\Rightarrow \)): \(V \) finite dim \(\Rightarrow \) \(V \) has a finite basis.
 This basis in our finite set.
 - (\(\Leftarrow \)) above.
3. Prop 5.3 on p. 55: any generating system of a finite dimensional vector space has at least \(\dim V \) vectors in it. That's just another way of stating: ch1 prop 2.8.

Recall last time we also proved

Lemma 2 If \(\{ z_1, \ldots, z_m \} \) is a set of linearly dependent vectors in a vector space \(V \), then there is \(k \) with \(2 \leq k \leq m \) and \(z_k \) is a linear combination of \(z_1, \ldots, z_{k-1} \).

We'll use it to prove

Prop 5.4 (p. 56) Any linearly independent set in a finite dimensional vector space can be completed to a basis.
That is, if \(\{v_1, \ldots, v_k \} \subseteq V \) is linearly independent, then \(\{v_k, \ldots, v_m \} \subseteq V \) so that \(\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_m \} \) is a basis of \(V \).

Proof (different from text)

Since \(V \) is finite dimensional it has a basis \(\{x_1, \ldots, x_n\} \).

We consider the set \(S \) of vectors

\[
V_1, \ldots, V_k, x_1, \ldots, x_n
\]

(\(x_1, \ldots, x_n \) in this order!)

and apply lemma several times in a row.

The set \(S \) is linearly dependent since \(v_i \)'s are linear combination of the basis vectors \(x_1, \ldots, x_n \).

By lemma, some vectors in \(S \) are linear combination of preceding ones. Let \(z \) be the first such vector.

Then \(z \) is different from any \(v_i \)'s (\(u \)'s are linearly independent!). Hence \(z = x_i \) for some \(i \), now consider the set \(S' \):

\[
S' = \{ v_1, \ldots, v_k, x_1, \ldots, x_{i-1}, x_i+1, \ldots, x_n \}
\]

This set still spans \(V \), since we can express \(x_i \) as a linear combination of \(v_1, \ldots, v_k, x_1, \ldots, x_{i-1} \) and \(x_i, x_i+1, \ldots, x_n \) spans \(V \).

Note: \(S' \) has \(n+m-1 \) vectors.

So unless \(m=1 \), it cannot be a basis—it's too big.

So it's linearly dependent.

Repeat the argument, and discard another \(x_i \).

We get a set \(S'' \) with \(n+m-2 \) vectors, which spans \(V \).

Unless \(n+m-2 = n \), we have too many vectors in \(S'' \) to be a basis. So \(S'' \) is linearly dependent.

Repeat. Eventually we get a set

\[
S^{(n-m)}
\]

that spans \(V \) and has exactly \(n = dm \) \(V \) vectors.
They have to be linearly independent, for otherwise we'd have n-1 vectors spanning V, which would contradict consequence (1).

Corollary 3 (compare prop 5.2 on p.54)
Any linearly independent set in a finite dimensional vector space V has at most \(\dim V \) vectors in it.

Finally we expect the following to be true:

Thm 4 If V is a finite dimensional vector space and U \(\subseteq \) V a subspace then U is finite dimensional and \(\dim U \leq \dim V \).

Proof Note that any basis \(\{v_1, \ldots, v_k\} \) of U is a linearly independent set in V hence \(k \leq \dim V \), by Corollary 3.
It remains to show that U has a basis.
If \(U = \{0\} \), it has an empty basis and \(\dim U = 0 \).
If \(U \neq \{0\} \), then it has at least 1 non-zero vector \(v_1 \).
If \(\text{span}\{v_1\} = U \), we're done.
If \(\text{span}\{v_1\} \neq U \), then \(\exists v_2 \in U \), \(v_2 \neq 0 \) and \(v_1, v_2 \) are linearly independent.
If \(\text{span}\{v_1, v_2\} = U \), we're done.
Otherwise \(\exists v_3 \neq 0, v_3 \in U \), \(v_3 \notin \text{span}\{v_1, v_2\} \).
The process stops when we get a basis of U.
It has to stop after \(\dim V \) steps.