Last time:

1) We defined the pull-back $F^* w$ of a k-form w by a map $F: \mathbb{R}^k \rightarrow \mathbb{R}^n$.

Recall: it amounts to substitution.
For example,

$$(\cos t, \sin t)^* (x \, dy - y \, dx) =$$
$$\cos t \, d(\sin t) - \sin t \, d(\cos t).$$

2) We defined integration of a 2-form $w = f(x,y) \, dx \, dy$ over a region $D \subseteq \mathbb{R}^2$:

$$\int_D f(x,y) \, dx \, dy := \int_D \int f(x,y) \, dx \, dy.$$

Similarly, we define integration of a 1-form $f(t) \, dt$ over an interval $[a, b]$ by

$$\int_{[a,b]} f(t) \, dt := \int_a^b f(t) \, dt \quad \text{for any } f(t).$$
\[
\int \int \cdots \int_{D} F(x_1, x_k) \, dx_1 \cdots dx_k = \\
\int \int \cdots \int_{D} F(x_1, \ldots, x_k) \, dx_1 \cdots dx_k.
\]

3) If we put pull-back and integration of k-forms together, we get integration of 1-forms over curves:

\[\int_{\gamma} \alpha = \int_{\gamma} (\tilde{x})^* \alpha \]

where \(\tilde{x} : [a, b] \to \mathbb{R}^n \) is a parameterization.

2-forms over surfaces:

\[\int_{\Sigma} \omega = \int_{D} X^* \omega \]

where \(X : D \to \Sigma \) is a parameterization and \(D \subseteq \mathbb{R}^2 \) is a domain.

This can be generalized to arbitrary dimensions.
Def. A parameterised k-manifold in \mathbb{R}^n is a differentiable map
\[X: D \to \mathbb{R}^n \]
where $D \subseteq \mathbb{R}^k$ is a region and X is 1-1 (except possibly on the boundary ∂D).

Thus: A 0-manifold is a point
A 1-manifold is a curve
A 2-manifold is a surface.

We can integrate k-forms over k-manifolds:
\[
\int_X \omega = \int_D X^* \omega
\]
where ω is a k-form in \mathbb{R}^n and $X: D \to \mathbb{R}^n$ a parameterized k-manifold.

Our goal: (generalized) Stokes’s Theorem:

Let M be a $k+1$ manifold with boundary ∂M and ω a k-form. Then
\[
\int_M \omega = \int_{\partial M} \omega.
\]
Recall how d is defined:

If $f: \mathbb{R}^n \to \mathbb{R}$ is a function,

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i + \sum_{k=1}^{n} \frac{\partial f}{\partial x_k} dx_k.$$

If $\omega = \sum F_{i-k} dx_i \wedge dx_k$, a k-form, then

$$d\omega = \sum \left(\frac{\partial F_{i-k}}{\partial x_k} \right) dx_i \wedge dx_k.$$

Example:

$M \subseteq \mathbb{R}^2$ a region.

\[\alpha = P \, dx + Q \, dy \] a 1-form.

\[d\alpha = dP \wedge dx + dQ \wedge dy = \left(\frac{\partial P}{\partial x} dx + \frac{\partial P}{\partial y} dy \right) \wedge dx + \left(\frac{\partial Q}{\partial y} dx + \frac{\partial Q}{\partial x} dy \right) \wedge dy = \frac{\partial Q}{\partial y} \, dy \wedge dx + \frac{\partial Q}{\partial x} \, dx \wedge dy = \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \wedge dy \]

\[\int_{M} P \, dx + Q \, dy = \iint_{M} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \wedge dy \]

This is [Green's Theorem](https://en.wikipedia.org/wiki/Green%27s_theorem).
Example

\[\omega = F_1 \, dy \wedge dz + F_2 \, dz \wedge dx + F_3 \, dx \wedge dy, \]

a form in \(\mathbb{R}^3 \) and \(M \subset \mathbb{R}^3 \)
a region with boundary \(\partial M \):

\[
\begin{align*}
d\omega &= dF_1 \wedge dy \wedge dz + dF_2 \wedge dz \wedge dx + dF_3 \wedge dx \wedge dy \\
&= \left(\frac{\partial F_1}{\partial x} \, dx + \frac{\partial F_1}{\partial y} \, dy + \frac{\partial F_1}{\partial z} \, dz \right) \wedge dy \wedge dz + \left(\frac{\partial F_2}{\partial x} \, dx + \frac{\partial F_2}{\partial y} \, dy + \frac{\partial F_2}{\partial z} \, dz \right) \wedge dz \wedge dx + \left(\frac{\partial F_3}{\partial x} \, dx + \frac{\partial F_3}{\partial y} \, dy + \frac{\partial F_3}{\partial z} \, dz \right) \wedge dx \wedge dy \\
&= \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \right) \, dx \wedge dy \wedge dz.
\end{align*}
\]

So we get

\[
\int \int \int_M \left(\frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \right) \, dx \wedge dy \wedge dz = \nabla \cdot \mathbf{F}
\]

Gauss's theorem.