1 True/false questions. Circle True or False. You don’t need to give reasons for your answers.
 T / F: Every finite set is countable
 T / F: A bijective map \(f : A \to B \) is invertible
 T / F: If \(f : A \to B, \ g : B \to A \) are two functions such that \(g(f(a)) = a \) for all \(a \in A \) then \(f \) is invertible.
 T / F: If \(f : A \to B, \ g : B \to A \) are two injective functions then there is a bijection \(h : A \to B \).
 T / F: There exists a set \(A \) of the same cardinality as the power set \(P(A) \) of \(A \).
 T / F: The set of natural numbers with the usual + and \(\cdot \) forms a ring.
 T / F: The set of rational numbers is countable.
 T / F: One can use Well-ordering principle for natural numbers to prove that the math induction principle is valid.
 T / F: Composition of functions is associative.
 T / F: Cancellation law fails in \(\mathbb{Z}_{10} \).
 T / F: Cancellation law fails in \(\mathbb{Z}_3 \).

2 Prove that \(2^n < n! \) for all natural numbers \(n \) greater than 3.

3 Prove that \(n < 2^n \) for all \(n \in \mathbb{N} \).

4a (1) Define what it means for \(A \) to be a set with \(n > 0 \) elements.
 (2) Prove that if \(A \) has \(n > 1 \) elements and \(a \in A \) then \(B = A \setminus \{a\} \) has \(n-1 \) elements.
 (3) Prove that if \(A \) has \(n \) elements and \(f : A \to B \) is a bijection then \(B \) also has \(n \) elements.
 (4) Suppose \(A \) and \(B \) are both countably infinite and \(f : A \to B \) is onto. Does this imply that \(f \) is injective? Explain.
 (5) Prove that if \(A \) and \(B \) are both sets with \(n \) elements \((n \in \mathbb{N}) \) and \(f : A \to B \) is onto then \(f \) is injective.

4b State the Pigeon hole principle. For extra credit: prove the Pigeon hole principle.

5 Let \(f : A \to B \) be a function \(\{U_i\}_{i \in I} \) be a family of subsets of \(B \). Prove that
 - \(f^{-1}(\bigcup_{i \in I} U_i) = \bigcup_{i \in I} f^{-1}(U_i) \);
 - \(f^{-1}(\bigcap_{i \in I} U_i) = \bigcap_{i \in I} f^{-1}(U_i) \).

 Let \(f : X \to Y \) be a function. Define a relation \(\sim \) on \(X \) by
 \[x \sim x' \iff f(x) = f(x') \, . \]
 - Prove that \(\sim \) is an equivalence relation.
 - What are the equivalence classes of this relation?
 - Denote the set of equivalence classes of \(\sim \) by \(X/\sim \). Prove that the map \(\bar{f} : X/\sim \to Y \) given by
 \[\bar{f}([x]) := f(x) \]
 is well-defined. Hint: what do you need to check?
 - Prove that \(\bar{f} : X/\sim \to Y \) is injective.

7 Let \(\sim \) be an equivalence relation on a set \(X \), \(C, D \subset X \) two equivalence classes of \(\sim \). Prove that if \(D \cap C \neq \emptyset \) then \(C = D \).

8 Recall that \(\text{Map}(X,Y) \) denotes the set of all functions from a set \(X \) to a set \(Y \). Prove that there does not exist a surjective map from \(X \) to \(\text{Map}(X,\{0,1\}) \).

(continues on the other side)
9 Prove that there is no bijection from \(\mathbb{Q} \) to \(\mathbb{R} \setminus \mathbb{Q} \).

10 Suppose \(X \) is a set, \(\sim \) an equivalence relation and \(X/\sim \) is the set of the equivalence classes.
(a) Prove that the function \(f : X \to X/\sim \), which takes \(x \in X \) to its equivalence class, is onto.
Hint: it’s very short.
(b) Prove that for any \(x, y \in X \)
\[
x \sim y \iff [x] = [y].
\]

11 Prove that \(f(x) = 3x \) defines a bijection from \(\mathbb{R} \) to \(\mathbb{R} \). Does it define a bijection from \(\mathbb{Z} \) to \(\mathbb{Z} \)? If not, what goes wrong? If it does, what’s the inverse?

12 Let \(A \) and \(B \) be two sets. Show that if \(A \) and \(B \) are countable then so are \(A \cup B \) and \(A \cap B \).

13 Is the set
\[
C = \{(x, y) \in \mathbb{R}^2 \mid x^6 + y^4 = 1\}
\]
the graph of a function from \(\mathbb{R} \) to \(\mathbb{R} \)? Explain.

14 Prove that composition of functions is associative.

15 Prove that if \(f : A \to B \) and \(g : B \to C \) are both onto then so is their composite \(g \circ f : A \to C \).