Last time: discussed consequences of order axioms for \(\mathbb{Z} \).

In particular we proved "cancellation law" for \(\mathbb{Z} \):

\[
\text{if } ab = ac \text{ and } a \neq 0, \text{ then } b = c.
\]

Remark: Commutative rings with 1 that satisfy the cancellation law are called integral domains.

2) Stated well-ordering principle for \(\mathbb{Z} \):

If \(\emptyset \neq A \subseteq \mathbb{Z} \), then \(A \) has a least element.

Note least elements are unique:

if \(a_1, a_2 \) are two least elements then

\[
a_1 \leq a_2 \text{ and } a_2 \leq a_1,
\]

hence \(a_1 = a_2 \) (this uses trichotomy!)

3) Proved:

(i) well-ordering \(\Rightarrow \emptyset \neq A \subseteq \mathbb{Z} \) s.t. \(0 < a < 1 \)

(ii) well-ordering \(\Rightarrow \) induction principle:

if \(A \subseteq \mathbb{Z} \) with (a) \(0 \in A \) and (b) \(\forall k \in A, k+1 \in A \)

then \(A = \mathbb{Z} \).

Example: Prove by induction that:

\[
1 + 2 + \ldots + n = \frac{n(n+1)}{2} \quad \text{for all } n \in \mathbb{N}.
\]

Solution: Let \(A = \{ n \in \mathbb{N} \mid 1 + 2 + \ldots + n = \frac{n(n+1)}{2} \} \).

Then \(1 \frac{(1+1)}{2} = 1 \Rightarrow 1 \in A \).

If \(k \in A \) then

\[
1 + 2 + \ldots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2} = (k+1) \left(\frac{k}{2} + 1 \right) = \frac{(k+1)(k+1+1)}{2}.
\]

\(\Rightarrow k+1 \in A \).

\[
\therefore A = \mathbb{N}, \text{ i.e. } \forall n \in \mathbb{N} \quad 1 + 2 + \ldots + n = \frac{n(n+1)}{2}.
\]
Recall. A relation R on a set X is a subset of $X \times X$. We write $a \sim b \iff (a, b) \in R$.

- R is an equivalence relation if
 1. $a \sim a$ for all $a \in X$ (reflexivity)
 2. $a \sim b \Rightarrow b \sim a$ (symmetry)
 3. $(a \sim b$ and $b \sim c) \Rightarrow a \sim c$ (transitivity)

Given an equivalence relation \sim on X we define the equivalence class of $a \in X$ to be the set

$$[a] = C(a) := \{ b \in X \mid b \sim a \}$$

(compare with Theorem 1.6.13 p. 17)

Theorem 5.1 Let \sim be an equivalence relation on X

1. $\forall a \in X, a \in C(a)$

2. $a \sim b \iff C(a) = C(b)$

3. $C(a) \cap C(b) \neq \emptyset \Rightarrow C(a) = C(b)$.

4. $X = \bigcup_{a \in X} C(a)$

Example $X = \mathbb{Z}$ and $a \sim b \iff a - b$ is even.

\sim is an equivalence relation (see Example 1.6.5; we'll come back to it). Then $C(0)$ = even integers

$C(1)$ = odd integers

and $\mathbb{Z} = C(0) \cup C(1)$.

Proof of Theorem 5.1

1. Since $a \sim a$, $a \in C(a)$.

2. Suppose $a \sim b$. If $c \in C(a)$, then $c \sim a$.

 Hence, since $c \sim a$ and $a \sim b$, $c \sim b \Rightarrow c \in C(b)$

 $\Rightarrow C(a) \subseteq C(b)$. Similarly, $C(b) \subseteq C(a)$
Therefore \(a \uparrow b \Rightarrow C(a) = C(b) \).

Conversely, suppose \(C(a) = C(b) \). Then, since \(a \in C(a) \) and \(b \in C(b) \), we have \(a \approx C(a) = C(b) \), \(a \approx C(b) \). \(\Rightarrow \) \(a \uparrow b \).

(2) Suppose \(C(a) \cap C(b) \neq \emptyset \). Then \(x \in C(a) \cap C(b) \). Hence \(x \approx a \) and \(x \approx b \).

Note \(x \approx a \Rightarrow x \approx a \uparrow x \). On the other hand, \(a \approx x \) and \(x \approx b \Rightarrow a \uparrow b \).

By (2) \(a \uparrow b \Rightarrow C(a) = C(b) \).

\[\therefore \text{if } C(a) \cap C(b) \neq \emptyset, \text{ then } C(a) = C(b). \]

Back to divisibility:

16.6 Definition let \(a, b \in \mathbb{Z} \). \(a \) divides \(b \) if \(b = ac \) for some \(c \in \mathbb{Z} \).

We write \(a \mid b \) if \(a \) divides \(b \).

Facts 16.7

1. \(a \mid a \)

2. \(a \mid b \Rightarrow a \mid (-b) \)

3. If \(a \mid b \) and \(b \mid c \), then \(a \mid c \).

Proof

1. \(a = a \cdot 1 \) hence \(a \mid a \).

2. \(a \mid b \Rightarrow b = ce \) for some \(c \in \mathbb{Z} \)

\[\Rightarrow -b = (-1) \cdot b = (-1) (c) \cdot a \]

\[= a \mid (-b) \]

3. Since \(a \mid b \), then \(b = ak \) for some \(k \in \mathbb{Z} \)

Since \(b \mid c \), \(c = lb \) for some \(l \in \mathbb{Z} \)

\[\Rightarrow c = lb = (lk) a \Rightarrow a \mid c. \]
Back to Example 1.6.5: Fix $n \in \mathbb{N}$, $n \geq 1$.

Define $a \sim b \iff n \mid (a - b)$

Claim. \sim is an equivalence relation.

Proof.

1. Reflexivity: $a - a = 0 = 0 \cdot n$ implies $n \mid a - a \Rightarrow a \sim a$.

2. Symmetry: $a \sim b \Rightarrow b - a = -(a - b) = k \cdot n$ for some $k \in \mathbb{Z}$

3. Transitivity

 $a \sim b \text{ and } b \sim c \Rightarrow a \sim c$.

 Since $a - c = (a - b) + (b - c) = k \cdot n + l \cdot n = (k + l) \cdot n$ implies $n \mid a - c \Rightarrow a \sim c$.

Equivalence classes of \sim (really \sim_n, $n \geq 2$)

Ex. $n = 2$

$C(0) = \{ n \in \mathbb{Z} \mid n \sim 0 = 2n \in \mathbb{Z} \mid 2 \mid n \}$ even integers

$C(1) = \{ n \in \mathbb{Z} \mid n = 2n \mid 2 \mid (n - 1) \}$

$= \{ n \in \mathbb{Z} \mid n = 2k + 1, k \in \mathbb{Z} \}$ odd integers

Since $2\mathbb{Z} \cup (2\mathbb{Z} + 1) = \mathbb{Z}$, this is it.

Ex. $n = 3$. We get $C(0) = 3\mathbb{Z}$

$C(1) = 3\mathbb{Z} + 1$

$C(2) = 3\mathbb{Z} + 2$

Since $\mathbb{Z} = 3\mathbb{Z} \cup (3\mathbb{Z} + 1) \cup (3\mathbb{Z} + 2)$

there are no more equivalence classes.