Last time: We fix a vector space V over a field F.

A subset $\{v_1, \ldots, v_m\} \subset V$ spans V if $\forall u \in V$ \exists $\alpha_i \in F$ st.

$u = \sum_{i=1}^{m} \alpha_i v_i$.

A subset $\{v_1, \ldots, v_m\} \subset V$ is linearly independent if

$\sum_{i=1}^{m} \alpha_i v_i = 0 \Rightarrow \alpha_1 = \alpha_2 = \cdots = \alpha_m = 0$.

A subset $\{v_1, \ldots, v_m\} \subset V$ is linearly dependent if $\exists \alpha_i \neq 0$ not all zero st. $\sum_{i=1}^{m} \alpha_i v_i = 0$.

We've seen: $\{v_1, \ldots, v_m\}$ is a linearly dependent set \iff there is a linear combination of the rest of v_i's.

We can do better:

Lemma 2.1.15

Suppose $\{v_1, \ldots, v_m\} \subset V$ is a linearly dependent set of non-zero vectors. Then $\exists k, 1 \leq k \leq m$ st. v_k is a linear combination of v_1, \ldots, v_{k-1}.

Proof:

Since $v_k \neq 0$, $\{v_1, \ldots, v_{k-1}\}$ is linearly independent.

Let k be the smallest integer st. $\{v_1, \ldots, v_{k-1}\}$ is linearly independent and $\{v_1, \ldots, v_k\}$ is linearly dependent.

Then \exists scalars $\alpha_1, \ldots, \alpha_k$ s.t. $\alpha_1 v_1 + \cdots + \alpha_k v_k = 0$.

And $\alpha_1, \ldots, \alpha_k$ are not all zero. Note that we cannot have $\alpha_k = 0$: This says v_1, \ldots, v_{k-1} are linearly dependent.

$\Rightarrow \alpha_k \neq 0$. $\Rightarrow v_k = -\alpha_k^{-1} (\alpha_1 v_1 + \cdots + \alpha_{k-1} v_{k-1})$.

Definition 2.1.16

A subset $\{v_1, \ldots, v_m\}$ of a vector space V over F is a basis if

1. $\{v_1, \ldots, v_m\}$ is linearly independent
2. $\{v_1, \ldots, v_m\}$ spans V.

Example:

$V = F^n \{e_1, \ldots, e_n\}$ is a basis, where $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$

Reason:

$(x_1, \ldots, x_n) \in F^n \Rightarrow (x_1, \ldots, x_n) = x_1 e_1 + \cdots + x_n e_n \Rightarrow \text{basis}$ spans.

$\sum x_i e_i = 0 \Rightarrow (d_1, \ldots, d_n) = (0, \ldots, 0) \Rightarrow d_1 = d_2 = \cdots = d_n = 0$.
Remark: \(\{ v_1, \ldots, v_m \} \) is a basis of \(V \) if \(V = \text{span}(V) \) and \(\{ v_1, \ldots, v_m \} \) is linearly independent.

\[u = \sum_{i=1}^m a_i v_i \]

Reason: \(u \in V \) for \(a_1, \ldots, a_m \in F \) so \(u = \sum_{i=1}^m a_i v_i \) spans \(V \).

If \(\{ v_1, \ldots, v_m \} \) is linear independent and
\[\sum_{i=1}^m a_i v_i = 0 \]

Then \(\sum_{i=1}^m (a_i - b_i) v_i = 0 \) implies \(a_i = b_i \) for all \(i \).

Conversely, suppose \(\sum_{i=1}^m a_i v_i = \sum_{i=1}^m b_i v_i \) then \(a_i = b_i \) for all \(i \)
and \(\sum_{i=1}^m a_i v_i = 0 \). Then \(\sum_{i=1}^m x_i v_i = 0 \) implies \(x_i = 0 \) for all \(i \).

Thus \(\{ v_1, \ldots, v_m \} \) is linear independent.

\[\sum_{i=1}^m a_i v_i = 0 \]

Definition: A vector space \(V \) is \textit{finite dimensional} over \(k \) if there is a finite set \(\{ v_1, \ldots, v_m \} \) that spans \(V \).

Example: \(F^n \) is finite dimensional over \(F \).

\(F[x] \) is finite dimensional over \(F \).

\(F[x] \) is not finite dimensional.

Reason: Suppose \(p_1, \ldots, p_m \in F[x] \) span \(F[x] \).

Let \(d = \max \{ \deg p_i \mid 1 \leq i \leq m \} \).

Then \(\exists a_1, \ldots, a_m \in F \) such that \(\sum_{i=1}^m a_i p_i = 0 \).

Since \(\deg(\text{RHS}) \leq \max(\deg p_i) \), \(\deg \text{RHS} = d \).

Then \(a^d = \deg(\text{LHS}) = d + 1 \).

If \(V \) is a vector space over a field \(F \) and \(V = \{ \theta \} \), then \(\theta \) spans \(V \). \(V = \{ \theta \} \) is finite dimensional.

One writes \(0 \) for \(\{ \theta \} \),
This is the \textit{zero} vector space over \(F \).
Lemma 2.1.21. Any non-zero finite dimensional vector space V over a field F has a basis.

Proof. Since V is finite dimensional, $Fv_1, \ldots, Fv_m \in V$ sat. $\{v_1, \ldots, v_m\}$ spans V.

If one of the v_i's is 0, discard it; the rest of the vectors still span V. We may assume $v_j \neq 0 \forall j$.

By 2.1.15, $\exists k \geq 1$ s.t. $\{v_1, \ldots, v_{k-1}\}$ are linearly independent and v_k is a linear combination of v_1, \ldots, v_{k-1}.

Then $\{v_1, v_2, \ldots, v_k, \ldots, v_m\}$ still spans V:

$v_k = \sum_{j=1}^{k-1} \beta_j v_j$ for some $\beta_1, \ldots, \beta_{k-1}$.

If $u = v_1 v_i + \ldots + a_k v_k + a_{k+1} v_{k+1} + \ldots + a_m v_m$, Then

$u = a_1 v_i + \ldots + a_{k-1} v_{k-1} + a_k \left(\sum_{j=1}^{k-1} \beta_j v_j \right) + a_{k+1} v_{k+1} + \ldots + a_m v_m$.

Continue the process. After finitely many steps (perhaps none) we're left with a linearly independent spanning set.

Aside. By convention if $V = 0$, V has an empty basis.

Recall F^n has a basis with n elements: e_1, \ldots, e_n.

We'd like to define the dimension of F^n to be n, which is the number of elements in a basis of F^n.

Issue: Suppose v_1, \ldots, v_n is another basis of F^n.

Why is $n = n$?

We need

Lemma 2.1.20 (exchange lemma).

Suppose V is a vector space over a field F.

$F v_1, \ldots, F v_m$ spans V, $\{v_1, \ldots, v_n\}$ linearly independent.

Then $n \leq m$.

(proof next time)
Theorem 2.1.22 Suppose \(v_1, \ldots, v_n \) and \(w_1, \ldots, w_m \) are two bases of a vector space \(V \) over \(F \). Then \(n = m \).

Proof. Since \(\{v_1, \ldots, v_n\} \) is a basis, it’s lin. independent.

Since \(\{w_1, \ldots, w_m\} \) is a basis, it spans \(V \).

By 2.1.20, \(n \leq m \).

Similarly, \(m \leq n \). Therefore \(n = m \). \(\square \)

We need bases to define dimensions of vector spaces.
But bases are good for other things too.

Example Suppose \(T: V \to W \) is a linear map

and \(\{v_1, \ldots, v_n\} \) is a basis of \(V \). Then \(T \) is uniquely determined by \(T(v_1), \ldots, T(v_n) \).

Reason: Any \(u \in V \) has \(u = \sum a_i v_i \).

Since \(T \) is linear, \(T(u) = T(\sum a_i v_i) = T(\sum a_i v_i) + \ldots + T(a_n v_n) = a_1 T(v_1) + \ldots + a_n T(v_n) \).

Conversely, given a basis \(\{v_1, \ldots, v_n\} \) of \(V \) and \(w_1, \ldots, w_m \in W \)

\(\exists! T: V \to W \) linear with \(T(v_i) = w_i \). (\(w_1, w_m \) need not be all distinct!)

Reason: Given \(u = \sum a_i v_i \), define

\(T(u) = \sum a_i w_i \).

Since \(v_i = 0 \cdot v_1 + \ldots + 0 \cdot v_{i-1} + 1 \cdot v_i + 0 \cdot v_{i+1} + \ldots + 0 \cdot v_n \), \(T(v_i) = w_i \).

Moreover, \(T \) is linear. For example, if \(u' = \sum b_i v_i \),

\(T(u' + u) = T(\sum a_i v_i + \sum b_i v_i) = T(\sum (a_i + b_i) v_i) = T(u) + T(u') \).