Recall \[B = \left\{ \{a_n\} \in \mathbb{Q}^\mathbb{N} \mid \forall x, y \in \mathbb{Q}, \exists n, m > N \text{ such that } |a_n - b_m| < \epsilon \right\} \]

Then \[|a_n - a_m| < \epsilon \]

\[I = \{ a \in \mathbb{Q} | \text{an} \to 0 \} \]

We proved \(I \) is an ideal in the ring \(B \).

\[IR = B/I \]

\(IR \) is a commutative ring.

Book denotes elements of \(IR \) by \(\lfloor a \rfloor \).

\[\lfloor a \rfloor = \text{equivalence class of Cauchy sequences in } B \]

\[= \{ a_i + x_i | x_i \in I, y = a_i + x_i \} \]

\(f \colon \mathbb{Q} \to IR, f(r) \mapsto \text{class of constant sequence } r \)

We've seen \(f \colon \mathbb{Q} \to IR, f \mapsto \text{class of constant sequence } r \) is an injective ring homomorphism.

We identify \(r \in \mathbb{Q} \) with \(\lfloor r \rfloor \in IR \).

\(IR \) is a commutative ring with \(1 = \lfloor 1 \rfloor \).

We also proved:

\[\text{Lemma 20.2} \] Suppose \(\text{an} \in \mathbb{Q}^\mathbb{N} \) and \(a_n \to 0 \). Then \(\exists M \in \mathbb{Q}, d \in \mathbb{Q} \)

with \(d > 0 \) such that either \(a_n > d \) \(\forall n > M \)

or \(a_n < -d \) \(\forall n > M \).

Theorem 3.5.18 \(IR = B/I \) is a field.

\(\text{Proof:} \) we need to show: \(\forall x \in IR, x \neq 0, f(x)IR \leq x, y = 1 \)

\(x \neq 0 \) means: \(x = \lfloor a_n \rfloor + I \) and \(x \neq 0 + I, = I \), ie.

\[4a_n \notin I, \text{ ie. } a_n \to 0. \]

By 20.2 \(\exists M, d > 0 \) such for \(|a_n| > d \) for \(n > M \).

Let \(b_n = \begin{cases} \frac{1}{n} & n \leq M \\ 1/a_n & n > M \end{cases} \)

Then by construction \(b_n \cdot a_n = 1 \) for \(n > M \)

\[\Rightarrow a_n \cdot b_n - 1 \to 0. \]

\[\Rightarrow 1/b_n \to 1 \in I \]

\[\Rightarrow (a_n + I) \cdot (b_n + I) = a_n \cdot b_n + I = 1 + I \]

ie. \(a_n \lfloor b_n \rfloor = 1 \in IR. \)

Oops. We forgot to check that \(1/b_n \in IR \).
Claim 4.6 \(n \in I \).

Reason: For \(n, m > M \),
\[
|b_n - b_m| = \left| \frac{1}{a_n} - \frac{1}{a_m} \right| = \frac{|a_m - a_n|}{|a_n||a_m|} < \frac{1}{d^2} |a_n - a_m|.
\]

Since \(a_n \) is Cauchy, \(\forall \varepsilon > 0 \) \(\exists N \) st. \(|a_n - a_m| < d^2 \varepsilon \) for \(n, m > N \).

Then for \(n, m > \max(N, N') \)
\[
|b_n - b_m| < \frac{1}{d^2} \cdot d^2 \varepsilon = \varepsilon.
\]

Lemma 2.1 \(R = E/I \) is an ordered field.

Recall, given a field \(F \) and \(P \subset F \setminus \{0\} \) such that
1. \(\forall x, y \in P \), either \(x \notin P \) or \(-x \notin P \) and
2. \(\forall x, y \in P \), \(x \cdot y \in P \) and \(x + y \in P \)
we have a relation \(< \) on \(F \):
\[
a < b \iff b - a \in P.
\]
(\(F, < \)) is then an ordered field.

Proof of 2.1. Let \(P = \{ a_n + I \mid \exists M, d \in \mathbb{R}, a_n > d \text{ for } n > M \} \).

(Note \(\frac{1}{d} + I \notin P \) even though \(\frac{1}{n} \to 0 \) as \(n \to \infty \).)

We need to check:
1. \(P \) is well-defined,
2. \(P \subset \mathbb{R} \setminus \{0\} = \mathbb{R} \setminus \frac{1}{n} + \mathbb{I} \) and satisfies (1), (2).

Suppose \((a_n) + I = (a_n') + I \) and \(\exists M, d > 0 \) with \(a_n > d \) for \(n > M \). Need to show:\n\[
\exists M', d' \text{ st. } a_n' > d' \text{ for } n > M'.
\]
Since \((a_n) + I = (a_n') + I \), \(a_n - a_n' \to 0 \). \(\Rightarrow \)
\[
\exists N \text{ st. for } n > N, \quad |a_n - a_n'| < \frac{d}{2}.
\]
If \(n > \max(N, M) \) then
\[a_n > d, \quad |a_n - a_n'| < \frac{d}{2}. \quad \Rightarrow \quad a_n' > \frac{d}{2}.\]

Claim 2.1.3.

\[\forall x \in \mathbb{R}, x > 0 \text{ either } x \in P \text{ or } -x \in P.\]

Reason: Suppose \(x > \{a_n + i \neq \mathbb{I} \}. \) Then \(x > 0. \) By 2.0.2

\[\exists M, d > 0 \text{ st. either } a_n > d \text{ for } n > M \text{ (then } a_n + i \in P)\]

or \(a_n < -d \text{ for } n > M \text{ (then } -a_n + i \in P)\)

Claim: \(P \) is closed under \(+ \) and \(\cdot.\)

Reason: If \(\{a_n + i \}, \{b_n + i \} \in P \) then \(\exists M, d_1, d_2 > 0\)

\[\iff a_n > d_1 \land b_n > d_2 \text{ for } n > M.\]

\[\Rightarrow a_n \cdot b_n > d_1 \cdot d_2 > 0 \text{ for } n > M \text{ and}\]

\[a_n + b_n > d_1 + d_2 > 0 \text{ for } n > M.\]

Final goal: Thm 3.5.22. Any subset \(A \subset \mathbb{R} \) bounded above has a least upper bound.

Lemma 21.2

\(\mathbb{Q} \) is an Archimedean ordered field: \(\forall \frac{a}{b} \in \mathbb{Q}, (a, b \in \mathbb{Z})\)

\[\exists N \in \mathbb{Z} \text{ with } \frac{a}{b} < N.\]

Proof: We may assume \(b > 0. \) By the division algorithm

\[\exists q, r \in \mathbb{Z} \text{ s.t. } a = q \cdot b + r \text{ and } 0 \leq r < b.\]

Then \(a = q \cdot b + r \leq q \cdot b + b = (q + 1) \cdot b\)

\[\Rightarrow \frac{a}{b} < q + 1 \in \mathbb{Z}.\]

Thm 3.5.21

\(\mathbb{R} \) is an Archimedean ordered field: \(\forall x \in \mathbb{R} \)

\[\exists N \in \mathbb{Z} \text{ st. } x < N.\]

Proof: \(x = \{a_n\} = \{4a_n\} + i \) for some Cauchy sequence \(\{a_n\} \) of rational numbers.

Since \(\{a_n\} \) is Cauchy, it's bounded by some \(\mathbb{R} \).
Since \(\mathbb{R} \) is Archimedean, \(\exists N \in \mathbb{N} \) with \(r \leq N \).

\[\Rightarrow \forall n \in \mathbb{N}, \quad a_n \leq |a_n| \leq r \leq N. \]

\[\Rightarrow N - a_n > 0 \quad \forall n. \]

\[(N + 1) - (2a_n + 1) = (N - a_n) + 1 \in \mathbb{P}. \]

\[\Rightarrow N + 1 > 2a_n + 1 = x. \]

Note: We proved several weeks ago: if \(F \) is an ordered field with least upper bound property then \(F \) is Archimedean. Here we first prove that \(\mathbb{R}/\mathbb{Z} \) is Archimedean and use this fact to prove that \(\mathbb{R}/\mathbb{Z} \) has least upper bound property.