Last time:
- Limits of sequences are unique.

- Cauchy sequences: A sequence \(s_n \) in an ordered field \(F \) [think \(F = \mathbb{Q} \) or \(\mathbb{R} \)] is Cauchy if \(\forall \varepsilon > 0 \exists N \in \mathbb{N} \) s.t. if \(n, m > N \) then \(|s_n - s_m| < \varepsilon \).

- 3.5.4: If a sequence \(s_n \in F \) converges then it is Cauchy.

However \(\forall x \in \mathbb{R} \exists \{a_n\} \subseteq \mathbb{Q} \) with \(a_n \to x \).

Conclusions:
1. In \(\mathbb{Q} \) there are many Cauchy sequences that don't have a limit in \(\mathbb{Q} \).

2. We should be able to construct \(\mathbb{R} \) out of \(\mathbb{Q} \) as follows: identify \(x \in \mathbb{R} \) with the set of all sequences in \(\mathbb{Q} \) that converge to \(x \).

\[x \leftrightarrow \{ a_n \} \subseteq \mathbb{Q} \mid a_n \to x. \]

We also saw: \(a_n \to x \), \(b_n \to x \) \(\Rightarrow \) \(a_n - b_n \to 0 \).

We now start our construction of \(\mathbb{R} \).

Observation 18.1: The set of sequences \(\mathbb{Q}^\mathbb{N} \) is a commutative ring \(\mathbb{R} \) is a commutative ring.

Recall: A commutative ring with 1 is:
- A set \(S \) together with two maps \(+ : S \times S \to S \), \(\cdot : S \times S \to S \)
- Two distinguished elements \(0_S, 1_S \in S \), \(0_S \neq 1_S \)

So that:
1. \(+, \cdot \) are associative and commutative.
2. \(0_S \) is identity for \(+ \), \(1_S \) is identity for \(\cdot \).
3. \(\forall a \in S \exists (-a) \in S \) s.t. \(a + (-a) = 0_S \)
4. Distributive law holds.

To turn \(\mathbb{Q}^\mathbb{N} = \{ \{a_n\} \} \subset \mathbb{Q} \) into a ring, we define \(1 \{a_n\} + 3 \{b_n\} = \{a_n + 3b_n\} \), \(\frac{1}{2} \{a_n\} \cdot \{b_n\} = \{\frac{a_n b_n}{2}\} \).
0 is the zero sequence: \(a_n = 0 \) \(\forall n \).

1. In the constant sequence \(a_n = 1 \) \(\forall n \)

\(-1 a_n = (-a_n)\).

It's easy to check \(\mathbb{R}^\mathbb{N} \) is indeed a ring.

Hence, in particular \(\mathbb{Q}^\mathbb{N} \) is set of sequences of rational numbers is a ring.

Question Suppose \((\mathbb{R}, +_R, \cdot_R, 0_R, 1_R)\) is a ring and \(S \subseteq \mathbb{R} \) is a subset. Is there a natural way to turn \(S \) into a ring?

\(\exists x \in \mathbb{N} \subseteq \mathbb{Z} \) is not a ring, \(2\mathbb{Z} \subseteq \mathbb{Z} \) is a ring.

Lemma 18.2 Suppose \((\mathbb{R}, +_R, \cdot_R, 0_R, 1_R)\) is a ring and \(S \subseteq \mathbb{R} \) a subset such that

1. \(a, b \in S \Rightarrow a - b \in S \)
2. \(a, b \in S \Rightarrow a \cdot b \in S \)
3. \(1 \in S \)

Then \(S \) is a commutative ring with 1.

Proof Since \(1 \in S \), \(S \neq \emptyset \), \(\forall a \in S \), \(0 = a - a \in S \).

\(\Rightarrow \forall a \in S \), \((-a) = 0 - a \in S \) by (1)

\(\Rightarrow \forall a, b \in S \), \(b + a = b - (-a) \in S \) by (1)

\(\Rightarrow \) we can restrict \(+_R : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) to \(S \times S \) and get a map \(+_S : +_R |_{S \times S} : S \times S \to S \)

Since \(+_R \) is associative and commutative, so is \(+_S \).

(2) says: we can restrict \(\cdot_R : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) to \(S \times S \) and get

\(*_S = *_R |_{S \times S} : S \times S \to S \).

\(*_S \) is associative and commutative since \(\cdot_R \) is.

Finally distributive law holds in \(S \) because it holds in \(\mathbb{R} \).
Def: If \(R \) is a ring and \(S \subset R \) is a subset as in 18.2, we say that \(S \) is a subring of \(R \).

Lemma 18.3: The set \(S \) of Cauchy sequences in \(\mathbb{Q} \) is a subring of \(\mathbb{Q}^\infty \).

We need first

Lemma 3.5.7: If \(\{a_n\} \subseteq \mathbb{Q} \) is Cauchy, then \(\exists M \in \mathbb{Q}, M > 0 \), s.t. \(|a_n| \leq M \) for all \(n \in \mathbb{N} \), i.e., \(\{a_n\} \) is bounded.

Proof: Given \(\varepsilon = 1 \), \(\forall N \in \mathbb{N} \) s.t. if \(n, m \geq N \) then

\[|a_n - a_m| < 1. \]

Let \(M = \max \{|a_1|, |a_N|, |a_{N+1}|\} \).

Then \(|a_k| \leq M \) if \(k \leq N \).

If \(m > N \),

\[|a_m| = |a_m - a_N + a_N| \leq |a_m - a_N| + |a_N| = |a_N| + 1 \leq M. \]

Proof of 18.3: Clearly the constant sequence \(\{a_n = 1 \} \) is Cauchy, \(\Rightarrow 1 \in S \).

0. If \(\{a_n\}, \{b_n\} \subseteq S \), then \(\forall \varepsilon > 0 \), \(\exists N_1, N_2 \in \mathbb{N} \) s.t.

- if \(n, m \geq N_1 \), then \(|a_n - a_m| < \varepsilon/2 \)
- if \(n, m \geq N_2 \), then \(|b_n - b_m| < \varepsilon/2 \).

Therefore, for \(n, m \geq \max(N_1, N_2) \)

\[|(a_n - b_n) - (a_m - b_m)| \leq |a_n - a_m| + |b_m - b_n| < \varepsilon/2 + \varepsilon/2, \]

\[\Rightarrow \{a_n - b_n\} \subseteq S. \]

- Suppose \(\{a_n\}, \{b_n\} \subseteq S \). We argue: \(\{a_n \cdot b_n\} \subseteq S \).

Since \(\{a_n\} \subseteq S \), \(\exists A > 0 \) s.t. \(|a_n| < A \)

Since \(\{b_n\} \subseteq S \), \(\exists B > 0 \) s.t. \(|b_n| < B \).
Now given \(\varepsilon > 0 \), \(\exists N_1 \text{ s.t. if } n, m > N_1 \)
\[|a_n - a_m| < \frac{\varepsilon}{2B} \]
\(\exists N_2 \text{ s.t. if } n, m > N_2 \)
\[|b_n - b_m| < \frac{\varepsilon}{2A} \]
Therefore, for \(n, m > \max(N_1, N_2) \)
\[|a_n b_n - a_m b_m| = |a_n b_n - a_n b_m + a_n b_m - a_m b_m| \]
\[\leq |a_n| |b_n - b_m| + |b_m| |a_n - a_m| \]
\[< A \cdot \frac{\varepsilon}{2A} + B \cdot \frac{\varepsilon}{2B} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \]
Now lemma 18.2 \(\Rightarrow (\mathbb{C}, +, \cdot, 0, 1) \) is a
commutative ring with 1.

Ring homomorphisms.

Recall

Def. Let \(R, S \) be two rings. A map \(\varphi : R \rightarrow S \)
\[\varphi \text{ a homomorphism if it preserves } + \text{ and } \cdot : \]
\[\forall a, b \in R \quad \varphi(a + b) = \varphi(a) + \varphi(b) \]
\[\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b) \]

Note: It’s automatic that \(\varphi(0_R) = 0_S, \varphi(-a) = -\varphi(a) \):
Reasons:
(1) \(\varphi(0_R) = \varphi(0_R + 0_R) = \varphi(0_R) + \varphi(0_R) \)
Now add \(-\varphi(0_R)\) to both sides.
\[\Rightarrow 0_S = \varphi(0_R) \]
(2) \(0_S = \varphi(0_R) = \varphi(a + (-a)) = \varphi(a) + \varphi(-a) \).
Now add \(-\varphi(a)\) to both sides. Get
\[-\varphi(a) = -\varphi(a) + \varphi(a) + \varphi(-a) \]
It’s not automatic that \(\varphi(1_R) = 1_S \).
We’ll require it.

Ex. \(\varphi : \mathbb{R} \rightarrow \mathbb{Z} \) is a ring homomorphism, \(\varphi \) \(S \text{ is a subring of } R \text{ } \)
"\text{means: the inclusion map} \)
\[i : S \rightarrow R, \quad i(s) = s, \text{ is a ring homomorphism.} \]