Last time: A sequence \((a_n) \) converges to \(l \) if \(\forall \varepsilon > 0 \) \(\exists N \) so that if \(n \geq N \) then \(|a_n - l| < \varepsilon \).

Today: more on limits; Cauchy sequences.

First:

Fact: If \(x \in \mathbb{R} \), \(0 \leq x \) and \(x < \varepsilon \) \(\forall \varepsilon > 0 \) then \(x = 0 \).

Proof: If \(x \neq 0 \), then \(x > 0 \). Take \(\varepsilon = x \). Then \(x < \varepsilon \).

Exercise 3.5.5: (was going to be 16.3). Limits are unique if they exist.

Proof: Suppose \(a_n \to L_1 \) and \(a_n \to L_2 \).

We argue: \(\forall \varepsilon > 0 \), \(|L_1 - L_2| < \varepsilon \). (Then fact \(\Rightarrow |L_1 - L_2| = 0 \) \(\Rightarrow L_1 = L_2 \).)

Since \(a_n \to L_1 \), \(\exists N_1 \) s.t. \(n \geq N_1 \Rightarrow |a_n - L_1| < \varepsilon/2 \).

Since \(a_n \to L_2 \), \(\exists N_2 \) s.t. \(n \geq N_2 \Rightarrow |a_n - L_2| < \varepsilon/2 \).

Therefore for \(n \geq \max(N_1, N_2) \)

\[
|L_1 - L_2| = |L_1 - a_n + a_n - L_2|
\leq |L_1 - a_n| + |a_n - L_2|
< \varepsilon/2 + \varepsilon/2 = \varepsilon.
\]

Examples of sequences that don't converge:

- \(a_n = n \)
- \(a_n = (-1)^n \)
- \(a_n = (1 - 1)^n \)

Proving this directly from definition requires work.

There is a shortcut:

Def: A sequence \((a_n) \) is **Cauchy** if \(\forall \varepsilon > 0 \exists N \) s.t. \(n, m \geq N \Rightarrow |a_n - a_m| < \varepsilon \).
Exercise 3.5.4: Suppose \(\{a_n\} \) converges \((to L)\).

\(\Rightarrow \) Then \(\{a_n\} \) is Cauchy.

Solution: Since \(a_n \to L \), \(\forall \varepsilon > 0 \), \(\exists N \) st. \(n > N \)

\[|a_n - L| < \frac{\varepsilon}{2}. \]

Therefore, if \(n, m > N \) then

\[|a_n - a_m| < |a_n - L + L - a_m| < |a_n - L| + |L - a_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \]

\[\Rightarrow \] \(\{a_n\} \) converges.

\textbf{Ex} \(a_n = n \) is not Cauchy: Let \(\varepsilon = 1 \). Then \(\forall N \in \mathbb{R} \), if \(n > N \), then \(n + 1 > N \), but

\[|a_{n+1} - a_n| = |n+1 - n| = 1 < 1 = \varepsilon. \]

\(\Rightarrow \) \(\{a_n\} \) does not converge.

\textbf{Ex} \((-1)^n \) is not Cauchy. Let \(\varepsilon = 1 \). Then \(\forall N \in \mathbb{R} \), if \(n > N \)

\[|a_{n+1} - a_n| = |(-1)^{n+1} - (-1)^n| = \]

\[= |(-1)| |(-1) - 1| = 2 \cdot 2 < 1. \]

\(\Rightarrow \) \(a_n = (-1)^n \) does not have a limit; doesn't converge to anything.

More reasons to care about Cauchy sequences:
We've seen: Convergent sequences of real numbers are Cauchy Converge is true as well.

Thm 3.6.14: Any Cauchy sequence of real numbers has a limit (This is really equivalent to existence of sup for sets bounded above)

\(\Rightarrow \) Compare with:
The limit of a convergent sequence of rational numbers need not be rational.
Consider \(\sqrt{2} = 1.41421356237 \ldots \)

Now let \(a_1 = 1, \ a_2 = 1.4, \ a_3 = 1.41, \ a_4 = 1.414 \ldots \)
\(a_n \to \sqrt{2} \)

In fact:

Lemma 17.1 \(\forall x \in \mathbb{R} \) \exists sequence \(\{a_n\}_{n=1}^\infty \) s.t.
\[
\begin{align*}
& a_n \in \mathbb{Q} \forall n \ni n \in \mathbb{N} \\
& a_n \to x.
\end{align*}
\]

Proof \(\forall n \in \mathbb{N} \exists r_n \in \mathbb{Q} \) s.t. \(x - r_n < r_n < x \) by 3.2.6.
\(\Rightarrow \) (1) \(x - r_n > 0 \)
\(\Rightarrow \) (2) \(x - r_n < \frac{1}{n} \).
\(\Rightarrow \) \(1 - r_n \) \(< \frac{1}{n} \).
\(\Rightarrow \) \(x - r_n \) \(< \frac{1}{n} \).

Now, \(\forall \varepsilon > 0, \exists N \in \mathbb{N} \) s.t. \(\frac{1}{N} < \varepsilon \).

Then if \(n \geq N \)
\[
| x - r_n | < \frac{1}{n} \leq \frac{1}{N} < \varepsilon.
\]
\(\Rightarrow \) \(\{r_n\} \) converges to \(x \).

\[\square\]

Note: The sequence \(\{r_n\} \) we constructed is very far from being unique: \(\frac{1}{n} \to 0 \) and \(\frac{1}{n^2} \to 0 \ldots \)

Key idea of section 3.5: Construct \(\mathbb{R} \) as a set of equivalence classes of Cauchy sequences of rational numbers.

What's the equivalence relation?

Lemma 17.2 Suppose \(a_n \to x \) and \(b_n \to x \). Then \(a_n - b_n \to 0 \).

Proof Need to show: \(\forall \varepsilon > 0 \) \(\exists N \in \mathbb{N} \) s.t. if \(n \geq N \) then
\[
| (a_n - b_n) - 0 | = | a_n - b_n | < \varepsilon.
\]
Since \(a_n \to x \), \(\exists N_1 \) s.t. if \(n \geq N_1 \) then \(|a_n - x| < \varepsilon/2 \).
Since \(b_n \to x \), \(\exists N_2 \) s.t. if \(n \geq N_2 \) then \(|b_n - x| < \varepsilon/2 \).
For $n \geq N = \max(N_1, N_2)$

$$|a_n - b_n| = |a_n - x + x - b_n| \leq |a_n - x| + |x - b_n| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Strategy for constructing \mathbb{R}:

1. Let $\mathbb{B} = \{a_n \mid n \in \mathbb{N}\}$ such that $\{a_n\}$ is Cauchy.

2. Make \mathbb{B} into a commutative ring with unity.

3. Let $I = \{a_n \mid a_n \text{ converges to } 0\}$

 Define ~ on \mathbb{B} by

 $$(a_n \sim b_n) \iff (a_n - b_n) \in I.$$

 Check that ~ is an equivalence relation and that \mathbb{B}/\sim is an ordered field with least upper bound property.