1. Let V and W be two vector spaces over a field F and $T : V \to W$ a linear map. Prove that if T is a bijection then its inverse $T^{-1} : W \to V$ is linear as well.

Hints: you need to show that T^{-1} preserves addition and multiplication by scalars. To show that T^{-1} preserves addition, consider $w_1, w_2 \in W$. Show that $w_1 = T(v_1), w_2 = T(v_2)$ for some $v_1, v_2 \in V$. Now compute $T^{-1}(w_1 + w_2) = T^{-1}(T(v_1) + T(v_2)) = ...$

2. Let $T : V \to W$ be linear map between two vector spaces over a field F. The kernel of T is, by Definition 2.2.11, the set

$$\ker T := \{v \in V \mid T(v) = 0\}.$$

(a.) Prove that $\ker T$ is a subspace of V (see Definition 2.1.25).

(b.) Show that T is 1-1 if and only if $\ker T = \{0\}$.

3. Let F be a field, $a \in F$.

(a.) Prove that map $\varphi : F[x] \to F$ given by

$$\varphi(p) := p(a)$$

is a homomorphism. The homomorphism φ is called the evaluation at a.

(b.) Prove that $\ker \varphi$ is the ideal $(x - a)$ consisting of all multiples of the polynomial $x - a$. Hint: division algorithm and/or one of its corollaries.

(c.) Prove that $F[x]/(x - a)$ is isomorphic to F.

4. Let F be a field and $I \subset F[x]$ an ideal. Prove that there is a polynomial $f \in F[x]$ so that $I = (f)$. That is, prove that all elements of I are multiples of a single polynomial f. Hints: what is f if $I = 0$? $I = F[x]$?

Now assume $I \subset F[x]$ is proper. Consider

$$W = \{\deg p \mid p \in I, p \neq 0\}.$$

Argue that W has the smallest element and pick $f \in I$ so that $\deg f = \min W$. Now argue as in the case of ideals in \mathbb{Z}.

5. Let F be a field. Consider the map $T : F[x] \to F[x]$ defined by

$$T(a_0 + a_1 x + \cdots + a_n x^n) = a_1 + 2a_2 x + \cdots + na_{n-1}x^{n-1}.$$

(If $F = \mathbb{R}$ then T is the map that sends a polynomial to its derivative).

(a.) Prove that T is linear.

(b.) Is T injective? Prove your answer.

(c.) Prove that for $F = \mathbb{Q}$ the map T is onto. Is T onto if $F = \mathbb{Z}_2$? Prove your answer.