1 Definition: A function \(f : \mathbb{C} \to \mathbb{R} \) is continuous at \(L \in \mathbb{C} \) if for every \(\epsilon > 0 \) there is \(\delta > 0 \) so that
\[
|z - L| < \delta \Rightarrow |f(z) - f(L)| < \epsilon.
\]
Prove, using the definition above, that function \(f(z) = |z| \) is continuous at all points of \(\mathbb{C} \).

2 Prove that if \(f : \mathbb{C} \to \mathbb{R} \) is continuous and \(\{z_n\} \subset \mathbb{C} \) converges to \(L \) then \(\{f(z_n)\} \) converges to \(f(L) \).

3 Prove that if a function \(f : \mathbb{R} \to \mathbb{R} \) is constant, then it is continuous.

4 Prove that if \(f, g : \mathbb{R} \to \mathbb{R} \) are continuous (at all points of \(\mathbb{R} \)) then so are their sum \(f + g \) and product \(fg \).

Hint: Let \(\{x_n\} \) be a sequence converging to \(L \). Then \(f(x_n) \to f(L) \), \(g(x_n) \to g(L) \) and \(f(x_n) + g(x_n) \to ... \)

5 Find the mistake in the “proof” of the following bogus Claim any continuous function \(f : (0, 1) \to \mathbb{R} \) is bounded.

Proof: Suppose \(f \) is not bounded. Then for any \(n \in \mathbb{N} \) there is \(x_n \in (0, 1) \) with \(|f(x_n)| \geq n \). Since \(0 < x_n < 1 \), \(\{x_n\} \) is bounded. Hence it has a convergent subsequence \(\{x_{n_k}\} \). Let \(L = \lim_{k \to \infty} x_{n_k} \). Since \(f \) is continuous \(f(x_{n_k}) \to f(L) \). On the other hand \(|f(x_{n_k})| \geq n_k \) by construction. Hence \(\{f(x_{n_k})\} \) is unbounded and cannot converge. Contradiction.

Hint: \(f(x) = \frac{1}{x} \) is continuous on \((0, 1) \) but is not bounded.