Ordered pairs.

Given two (nonempty) sets A and B we would like to define their Cartesian product $A \times B$.

It's the set of ordered pairs

$$A \times B = \{ (a, b) \mid a \in A, b \in B \}.$$

Q. So what's an ordered pair (a, b)?

A. (a, b) is a set with the following property:

for all $a' \in A, b' \in B$

$$(a, b) = (a', b') \iff (a = a' \text{ and } b = b').$$

There are several ways to construct (a, b).

For example, we could set

$$(*) \quad (a, b) = \{ (a, b), (b, a) \}.$$

(See Wikipedia for a proof that (a, b) defined by $(*)$ does have the required property).

There are other constructions. In practice what matters is not the construction but the property.

Ex. $A = \{ 0, 1 \}, B = \{ 1, 2, 3 \}$

$A \times B = \{ (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3) \}$

$B \times A = \{ (1, 0), (2, 0), (3, 0), (1, 1), (2, 1), (3, 1) \}$

Note

$A \times B \neq B \times A$ (as sets)

Ex." $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$, the set of ordered pairs of real numbers.

Ex."" For any set A, $\emptyset \times A = \emptyset$ since $\emptyset \times A$ has
2.2

no elements. Similarly $A \times \emptyset = \emptyset$.

Definition 2.1 A relation on a set X is a subset R of $X \times X$.

Example (parity relation on \mathbb{Z})

$$R = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} \mid \text{n and m are both odd or }\text{n and m are both even}$$

$$= \{(n, m) \in \mathbb{Z} \times \mathbb{Z} \mid n - m \text{ is even} \}$$

Example Let X be any set. The equality relation on the set X is

$$\Delta = \{(x, y) \in X \times X \mid x = y \}$$

Example $X = \mathbb{R}$.

$$\mathcal{R} = \{(x, y) \in \mathbb{R} \mid x < y \}$$ the "less than" relation.

Equivalence relations

Definition (see Salt, 1.6.1) An equivalence relation on a set X is a relation $R \subseteq X \times X$ such that

1. **(ER1) Reflexivity** For any $a \in X$, $(a, a) \in R$
2. **(ER2) Symmetry** If $(a, b) \in R$ then $(b, a) \in R$
3. **(ER3) Transitivity** If (a, b) and (b, c) are in R then $(a, c) \in R$.

Example 2.3

Recall: \(n \in \mathbb{Z} \) is even if \(n = 2k \) for some \(k \in \mathbb{Z} \).

Claim:
\[
\mathcal{R} = \{(n,m) : \mathbb{Z} \times \mathbb{Z} \mid n-m \text{ is even}\}
\]

is an equivalence relation.

Proof:
(i) Since \(0 = 2 \cdot 0 \), \(0 \) is even,
\[
\Rightarrow \forall n \in \mathbb{Z} \text{ (i.e., for any } n \in \mathbb{Z} \text{) } n-n = 0 \text{ is even}
\Rightarrow (n,n) \in \mathcal{R}.
\]
(ii) If \((n,m) \in \mathcal{R} \), then \(n-m = 2k \) for some \(k \in \mathbb{Z} \)
\[
\Rightarrow m-n = -(n-m) = -2k = 2(-k)
\Rightarrow (m,n) \in \mathcal{R}.
\]
(iii) Suppose \((n,m), (m,r) \in \mathcal{R} \).
Then \(n-m = 2k \) and \(m-r = 2l \) for some \(k, l \in \mathbb{Z} \).
\[
\Rightarrow n-r = (n-m) + (m-r) = 2k + 2l = 2(k+l)
\Rightarrow (n,r) \in \mathcal{R}.
\]

Remark: With this notation the definition of an equivalence relation \(\mathcal{R} \) on a set \(X \) translates into:

(i) \(\forall a \in X \) \(a \sim a \)
(ii) \(\forall a, b \in X \) if \(a \sim b \) then \(b \sim a \)
(iii) \(\forall a, b, c \in X \) if \(a \sim b \) and \(b \sim c \) then \(a \sim c \).
2.4

Functions

Informally, a function \(f \) from a set \(A \) to a set \(B \) assigns to each element \(a \in A \) an element \(f(a) \in B \).

We write: \(f : A \rightarrow B \)

\(A \) is the domain of the function \(f \), \(B \) is the range of \(f \)

(\(B \) is also called the codomain and the target of \(f \))

Formally these are two ways to proceed:

1) "function" is a primitive notion, just like "set."

2) Everything is a set. So a function \(f : A \rightarrow B \) should be a set of some sorts.

 Now given \(f : A \rightarrow B \) we have the set

 \[\text{graph}(f) = \{(a,b) : a \in A, b = f(a)\} \]

 which is a subset of \(A \times B \).

Consequently

Def. (Sally, 1.7.3) Let \(A \) and \(B \) be sets. A function from \(A \) to \(B \) is a subset \(R \subseteq A \times B \) such that

i) \(\forall a \in A \) \(\exists b \in B \) with \((a,b) \in R \)

ii) if \((a,b) \) and \((a,b') \) \(\in R \) then \(a = a' \)

("each element of \(A \) occurs exactly once as \(a \) first coordinate ")

Ex. \(A = \emptyset \), \(B \) is a set

\(\emptyset \times B = \emptyset \).

And \(\emptyset \subseteq \emptyset \) is a function. Why?

Q. Is there a function from \(B \neq \emptyset \) to \(\emptyset \)?
Most mathematicians (most of the time) don't think of functions as graphs. We think of them as rules that assign elements to elements.

Example For every set A we have the identity function $\text{id}_A : A \to A$, $\text{id}_A(a) = a$.

($\text{graph (id}_A) = \{(a, b) \in A \times A \mid b = a\}$

Note: if $A = \emptyset$, $\text{graph (id}_A) = \emptyset$.

Functions can be composed:

Given two functions $f : A \to B$, $g : B \to C$.

Their composite $g \circ f$ is defined by

$$(g \circ f)(a) = g(f(a)).$$

Example If $g(x) = \sin(x)$ and $f(x) = x^2$,

$$(g \circ f)(x) = \sin(x^2).$$

Theorem (Sally, 1.7.3) Composition of functions is associative: for any three functions $f : A \to B$, $g : B \to C$ and $h : C \to D$,

$$(h \circ (g \circ f)) = (h \circ g) \circ f.$$

Proof For any $a \in A$,

$$((h \circ (g \circ f))(a) = (h \circ (g \circ f))(a) = h(g(f(a))) = h(g(f(a))) = h((g \circ f)(a)) = (h \circ (g \circ f))(a).$$

Since $a \in A$ is arbitrary,

$$(h \circ (g \circ f)) = (h \circ g) \circ f.$$

For all triples of composable functions. \blacksquare