Quiz Friday: convergence of sequences, Cauchy sequences, homomorphisms, isomorphisms.

Last time: subrings, homomorphisms, isomorphisms.

Recall a subset S of a ring R is a subring if

(i) $0 \in S$
(ii) $s, t \in S \Rightarrow s + t, st \in S$

Then $(S, +, \cdot, 0_{R})$ is a ring.

Note we need (i) and (ii): \mathbb{N} is not a subring of \mathbb{Z}, but $\mathbb{N} \subseteq \mathbb{Z}, a + b, a \cdot b \in \mathbb{N}$.

Lemma 19.1 Suppose R is a ring, $S \subseteq R$ a subset so that

(i) $s, t \in S$, $s + t \in S$ and $s \cdot t \in S$.

(ii) Since $S + 0_{R} = S$ then $0_{R} - S = S'$.

(iii) $s, t \in S$, $-t \in S \Rightarrow S + (-t) = S - t \subseteq S$.

Proof: We argue that (i) $0 \in S$, (ii) $s, t \in S$, $s - t \in S$.

(i) Since $S + 0_{R} = S$ then $0_{R} - S = S'$.

(ii) $s, t \in S$, $0_{R} - S$ since $0_{R} \in S'$.

(iii) $s, t \in S$, $-t \in S \Rightarrow S + (-t) = S - t \subseteq S$.

Lemma 19.2 Suppose $f: R \rightarrow S$ is a homomorphism.

Then $f(R) = \{ f(r) \mid r \in R \}$ is a subring of S.

Moreover, if $f(1_{R}) = 1_{S}$ then $f(R)$ has 1_{S}.

Proof: $f(R) \neq \emptyset$, since $R \neq \emptyset$.

(i) If $x, y \in f(R)$ then $x = f(a), y = f(b)$ for some $a, b \in R$.

$\Rightarrow x \cdot y = f(a) \cdot f(b) = f(ab) = f(R)$

$x - y = f(a) - f(b) = f(a + (-b)) = f(R)$.

$\Rightarrow f(R)$ is a subring by 19.1.

We've seen: the set $\text{Map}(\mathbb{N}, \mathbb{R})$ of all sequences $\mathbb{N} \rightarrow \mathbb{R}$ is a ring.

Let $C = \{ g \in \text{Map}(\mathbb{N}, \mathbb{R}) \mid \text{for all } i \text{ is Cauchy } g \}$.

Goal: C is a subring of $\text{Map}(\mathbb{N}, \mathbb{R})$ hence a ring.
We need first

Sally, Lemma 3.5.7 If \(\{a_n\} \subset \mathbb{Q} \) is Cauchy then \(\exists M \in \mathbb{Q} \)

so that \(|a_n| \leq M \) \(\forall n \)

ie. \(\{a_n\} \) is bounded.

Proof Fix \(\varepsilon = 1 \). \(\exists N \in \mathbb{N} \) st. for \(n, m \geq N \)

\[|a_n - a_m| < 1 \]

Let \(M = \max \{ |a_1|, \ldots, |a_N|, |a_N + 1| \} \)

If \(k \leq N \) then \(|a_k| \leq M \). (by definition of \(M \))

If \(k > N \), \(|a_k| = |a_k - a_N + a_N| \leq |a_k - a_N| + |a_N| \leq |a_N + 1| \leq M \).

Lemma 19.3 The set \(\mathbb{Q} \) of Cauchy sequences in \(\mathbb{Q} \) is a subring of \(\operatorname{Map} (\mathbb{N}, \mathbb{Q}) \) (containing 1).

Proof (i) Any constant sequence is Cauchy.

So in particular the sequence \(a_n = 1 \) \(\forall n \) is Cauchy.

(ii) Suppose \(\{a_n\}, \{b_n\} \in \mathbb{Q} \). We argue: \(|a_n - b_n| = |a_n - b_0 + b_0 - b_n| \)

Fix \(\varepsilon > 0 \). Then \(\exists N_1, N_2 \) so that

\[\forall n, m > N_1 \quad |a_n - a_m| < \frac{\varepsilon}{2} \]

\[\forall n, m > N_2 \quad |b_n - b_m| < \frac{\varepsilon}{2} \]

\[a_n, a_m, b_n, b_m \text{ in Cauchy.} \]

Next we argue: \(|a_n - b_n| = |a_n - b_0 + b_0 - b_n| \)

Since \(\{a_n\}, \{b_n\} \) are Cauchy, they are both bounded. \(\forall A, B \in \mathbb{Q} \)

\[|a_n| \leq A \quad \forall n, \quad |b_n| \leq B \quad \forall n. \]

Now given \(\varepsilon > 0 \), \(\exists N_1, N_2 \) st. for \(n, m > N_1 \)

\(|a_n - a_m| < \frac{\varepsilon}{2B} \)

\(|b_n - b_m| < \frac{\varepsilon}{2A} \)

Therefore for \(n, m > \max \{ N_1, N_2 \} \)

\(|a_n b_n - a_m b_m| = |a_n b_n - a_n b_m + a_n b_m - a_m b_m| \)

\[\leq |a_n||b_n - b_m| + |a_n - a_m||b_m| < A \cdot \frac{\varepsilon}{2B} + B \cdot \frac{\varepsilon}{2A} = \varepsilon. \]
By lemma 19.1, \(\mathbb{E} \) is a subring of \(\text{Map}(\mathbb{N}, \mathbb{E}) \) (containing \(1 \)), hence a ring with 1.

Definition

Let \(R \) be a commutative ring.

A nonempty subset \(I \) of \(R \) is an ideal if:
1. \(\forall a, b \in I \) \(a - b \in I \)
2. \(\forall r \in R \) \(r \cdot a \cdot I \cdot r \cdot a \in I \).

For example, \(R = \mathbb{Z} \), \(n \mathbb{Z} = \{ nk | k \in \mathbb{Z} \} \) is an ideal in \(\mathbb{Z} \):

- \(\forall a, b \in \mathbb{Z} \), \(a = nk_1, b = nk_2 \) for some \(k_1, k_2 \in \mathbb{Z} \)
- \(a - b = n(k_1 - k_2) \in n \mathbb{Z} \)

Note: \(\mathbb{Z} \subseteq \mathbb{Q} \) is a subring but not an ideal.

Note: If \(R \) is a ring with 1, \(I \subseteq R \) an ideal and \(1 \in I \) then \(I = R \).

Reason: \(\forall r \in R, r \cdot 1 \cdot I \in I \) since \(1 \in I \).

If we want "interesting" ideals they should not have 1.

Road Map. An ideal \(I \subseteq R \) defines an equivalence relation \(\sim \) on \(R \). The set \(R/\sim \) of equivalence classes is naturally a ring.

Lemma 19.4 Let \(I \) be an ideal in a commutative ring \(R \).

The relation \(\sim \) defined by
\[
\forall a, b \in I \quad a \sim b \iff a - b \in I
\]
is an equivalence relation.

Proof: (i) Since \(I \neq \emptyset \) there exists \(x + I \). Then \(\emptyset = x - x + I \).

\(\forall r \in R, r \cdot \emptyset \) since \(1 - 1 = 0 \in I \).
(ii) Since $0 \in I$, $\forall x \in I$, $0-x = -x \in I$.
Now suppose $r \sim r'$. Then $r-r' \in I$. \[I \ni -(r-r') = r'-r \sim r. \]

(iii) If $x, y \in I$, $y \in I$. \[x+y = x-(-y) \in I \]
Now suppose $x \sim y$, $y \sim z$. Then $x-y, y-z \in I$\[I \ni (x-y)+(y-z) = x-y+y-z = x-z. \]
\[\Rightarrow x \sim z \]
\[\therefore \sim \text{ is an equivalence relation.} \]

Example If $R = \mathbb{Z}$, $I = n\mathbb{Z}$, $m \sim m' \Leftrightarrow m-m' \in n\mathbb{Z}$\[\Leftrightarrow n \mid (m-m') \]
The set R/I of equivalence classes in \mathbb{Z}_n.

In general, given an ideal $I \subset R$, \[r+I = \{ r' \mid r \sim r', r' \in I \} \]
\[= \{ r' \mid r' = r+i \text{ for some } i \in I \} = \{ i \in I \} = : r+I. \]

Notation $R/I = \{ r+I \mid r \in R \}$ the set of equivalence classes in the ring R defined by the ideal I.

Remarks

(1) $0 \subseteq I$ and R are ideals in a ring R.

(2) If R is a field, $0 \subseteq I$ and R are the only ideals:
If $I \subset R$ is an ideal and $I \neq 0$, \[\exists a \in I, a \neq 0. \]
Since R is a field, a has a multi-inverse a^{-1}.
\[1 = a^{-1}a \in I. \]
\[\Rightarrow R \subseteq I \text{ (as we've seen above)} \]
\[\therefore R = I. \]

Next time R/I is a ring (just like $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ is a ring).