1. Prove that if \(p \in \mathbb{N} \) is a prime, \(a, b \in \mathbb{Z} \) and \(p | ab \) then either \(p | a \) or \(p | b \).

Hint: Suppose \(p \) does not divide \(a \). Then \(\gcd(p, a) = 1 \) (why?) and therefore there are \(x, y \in \mathbb{Z} \) such that

\[
1 = xp + ya
\]

(why?). Consequently \(b = b \cdot 1 = b \cdot (xp + ya) = \ldots \). Now argue that \(p \) divides \(b \).

2. Prove that for any two complex numbers \(u, v \in \mathbb{C} \)

\[
\bar{u} + v = \bar{\bar{u}} + \bar{v} \quad \text{and} \quad \bar{u} \cdot v = \bar{\bar{u}} \cdot \bar{v}.
\]

3. Suppose \(\{a_n\}, \{b_n\} \subset \mathbb{R} \) are two sequences so that \(a_n < b_n \) for all \(n \) and moreover

\[
[a_{n+1}, b_{n+1}] \subset [a_n, b_n].
\]

Prove that the intersection \(\bigcap_{n=1}^{\infty} [a_n, b_n] \) is nonempty. Give an example to show that \(\bigcap_{n=1}^{\infty} (a_n, b_n) \) may be empty.

4. Suppose a sequence \(\{a_n\} \) of real numbers converges to \(L \).

(a) Prove that any subsequence \(\{a_{n_k}\} \) of \(\{a_n\} \) has to converge and its limit has to be \(L \) as well.

(b) Prove that the sequence \(a_n = \sin(\frac{\pi}{2} n) \) does not converge. Hint: there is more than one way to prove it. One of them uses (a), others don’t.

5. Suppose \(R \) is a commutative ring and \(a \in R \) is an element of this ring. Prove that the set

\[
aR := \{ax \mid x \in R\}
\]

is an ideal in \(R \).

An ideal of the form \(aR \) for some \(a \in R \) is called principal.

6. Prove that any ideal \(I \) in the ring \(\mathbb{Z} \) of integers is principal. That is, prove that there is \(a \in \mathbb{Z} \) so \(I = a\mathbb{Z} \).

Hint: If \(I = \{0\} \), take \(a = \ldots \). Now suppose \(I \neq \{0\} \). Argue first that \(S = \{n \in I \mid n > 0\} \) is non-empty. Next argue that \(I = a\mathbb{Z} \) where \(a = \min S \). You may wish to use the division algorithm for the last argument; it’s very similar to what you did to prove the existence of g.c.d.’s.

7. Let \(R \) be a commutative ring and \(I, J \subset R \) be two ideals. Prove that

\[
I + J = \{x + y \mid x \in I, y \in J\}
\]

is again an ideal in \(R \). \(I + J \) is called the sum of the ideals \(I \) and \(J \).

8. Let \(a, b \in \mathbb{Z} \) be two integers. Then by problem 7 \(I = a\mathbb{Z} + b\mathbb{Z} \) is an ideal in \(\mathbb{Z} \). By problem 6 \(I = d\mathbb{Z} \) for some \(d \in \mathbb{Z} \). Prove that if \(a, b \) are not both zero then \(|d| = \gcd(a, b) \).