#1 \(a \in f^{-1}(\bigcup U_i) \Leftrightarrow f(a) \in \bigcup U_i \Leftrightarrow f(a) \in U_j \text{ for some } j \)
\[\Rightarrow a \in f^{-1}(U_j) \text{ for some } j \Rightarrow a \in \bigcup U_j \text{ for some } j \]
\[a \in f^{-1}(\bigcap U_i) \Rightarrow f(a) \in \bigcap U_i \Rightarrow f(a) \in U_i \text{ for all } i \Rightarrow a \in f^{-1}(U_i) \text{ for all } i \Rightarrow a \in \bigcap f^{-1}(U_i) \]

#2 Since \(B \subseteq F \) is bounded below, \(\exists L \in F \text{ st. } L \leq b \forall b \in B \Rightarrow -b \geq -L \forall b \in B \Rightarrow -B \) is bounded above. By the least upper bound property of \(F \)
There exists \(\alpha = \sup(-B) \). Then \(\forall b \in B \), \(-b \leq \alpha \). \(\Rightarrow \forall b \in B \)
\[-\alpha \leq b \Rightarrow -\alpha \text{ is a lower bound of } B \]
If \(L \) is any lower bound of \(B \), then \(-L \) is an upper bound of \(-B\) as we saw above. Since \(\alpha = \sup(-B) \), \(\alpha \leq -L \Rightarrow L \leq -\alpha \).
\[\Rightarrow -\alpha \text{ is the greatest lower bound of } B \]

#3 (1) Since \(f(x) = f(x) \), \(x \sim x \forall x \in X \).
(2) If \(x \sim y \), \(f(x) = f(y) \). Then \(f(y) = f(x) \Rightarrow y \sim x \).
(3) If \(x \sim y \) and \(y \sim z \), \(f(x) = f(y) \) and \(f(y) = f(z) \Rightarrow f(x) = f(z) \Rightarrow x \sim z \).
\[\Rightarrow \sim \text{ is an equivalence relation.} \]
- \([x] = \{ x' \in X \mid x \sim x' \} \)
- \(f([x]) = \{ f(x') \mid x' \in X \} = f(x') \)
- \(f([x]) \) is well-defined.
- If \(f([x]) = f([x']) \) then \(f(x) = f(x') \Rightarrow x \sim x' \Rightarrow [x] = [x'] \Rightarrow f \) is 1-1.

#4 If \(d_1, d_2 \) are two gcd's of \(a \) and \(b \), then \(d_1, d_2 \) (since \(d_2 \) is a greatest common divisor of \(a \) and \(b \) and \(d_1 \mid a \) and \(d_1 \mid b \))
Similarly \(d_2 \mid d_1 \). By \#7 \#5, \(d_1 = \pm d_2 \).
But \(d_1, d_2 \in \mathbb{N} \Rightarrow d_1 = d_2 \).

#5 Consider \(W = \{ xa + yb \mid x, y \in \mathbb{Z}, \ ax + by \geq 0 \} \).
Since \(a, b > 0 \), \(a^2 + b^2 > 0 \) \(\Rightarrow a, a + b, b \in W \) \(\Rightarrow W \neq \emptyset \).

By well-ordering principle, \(d = \min W \) exists. Since \(d \in W \)
\(d = na + mb \) for some \(n, m \in \mathbb{Z} \).

We now argue that \(d \mid a \).

By the division algorithm, \(a = qd + r \) for some \(q, r \in \mathbb{Z} \)
with \(0 \leq r < d \). Suppose \(r \neq 0 \). Then \(r > 0 \) and
\(r = a - qd = a - q(na + mb) = (1-qn)a + (q-m)b \)

Since we assumed that \(r > 0 \), \(r \in W \). But \(r < d = \min W \)
Contradiction. Therefore \(r = 0 \). \(\Rightarrow d \mid a \).

Similarly \(d \mid b \).

If \(d \mid a \) and \(d \mid b \) then \(d \mid (na + mb) \) \(\) (HW5 #8)
\(\Rightarrow d \mid d \).

Conclusion: \(d = \min W \). \& gcd of \(a \) and \(b \).