#1

Induction on \(n = |A| \).

If \(|A| = 1 \) then \(A = \{a\} \) for some \(a \). If \(B \subseteq A \) then either \(B = \emptyset \) or \(B = \{a\} \Rightarrow B \) is finite and \(|B| \leq 1 \).

Now suppose \(|A| = k + 1 \) and suppose for any set \(D \) with \(|D| \leq k \), \(C \subseteq D \Rightarrow C \) is finite and \(|C| \leq k \).

Since \(|A| = k + 1 \) there is a bijection \(f : \{1, \ldots, k + 1\} \rightarrow A \).

Suppose \(B \subseteq A \). Then either \(f(k + 1) \in B \) or \(f(k + 1) \notin B \).

If \(f(k + 1) \notin B \) then \(B = D = \{f(1), \ldots, f(k)\} \).

Note: \(g : \{1, \ldots, k\} \rightarrow D, \ g(i) = f(i) \) is a bijection. So by inductive assumption \(B \) is finite and \(|B| \leq k = |D| < k + 1 = |A| \).

If \(f(k + 1) \in B \), \(B \setminus \{f(k + 1)\} \leq \{f(1), \ldots, f(k)\} \).

By inductive assumption \(\exists l \leq k \) and a bijection \(h : \{1, \ldots, l\} \rightarrow B \setminus \{f(k + 1)\} \).

Hence \(\tilde{h} : \{1, \ldots, l, l + 1\} \rightarrow B \), \(\tilde{h}(i) = \begin{cases} f(k + 1) & i = l + 1 \\ h(i) & i \leq l \end{cases} \).

\(\tilde{h} \) is a bijection. \(\Rightarrow B \) is finite and \(|B| = l + 1 \leq k + 1 = |A| \).

Since \(l \leq k \).

#2

Since \(f : B \rightarrow A \) is injective, \(f : B \rightarrow f(B) \) is also a bijection.

By #1, \(f(B) \) is a finite set and \(|f(B)| \leq |A| \).

Since \(|B| = |f(B)| \), \(B \) is a finite set and \(|B| \leq |A| \).

#3

Suppose \((g \circ f)(a_1) = (g \circ f)(a_2) \) for some \(a_1, a_2 \in A \).

Then \(g(f(a_1)) = g(f(a_2)) \).

Since \(g \) is injective, \(f(a_1) = f(a_2) \).

Since \(f \) is injective, \(a_1 = a_2 \Rightarrow g \circ f \) is injective.

Similarly, given \(c \in C \), \(\exists b \in B \) s.t. \(g(b) = c \).

Since \(g \) is onto. Since \(f \) is onto, \(\exists a \in A \) s.t. \(f(a) = b \Rightarrow (g \circ f)(a) = c \Rightarrow g \circ f \) is onto.
#4 If \(a \in X \cup Y \) then \(a \in X \) or \(a \in Y \)

If \(a \in X \) then \(f(a) \in f(X) \subseteq f(X) \cup f(Y) \)

If \(a \in Y \) then \(f(a) \in f(Y) \subseteq f(X) \cup f(Y) \)

\[\Rightarrow f(X \cup Y) \subseteq f(X) \cup f(Y). \]

For any sets \(Z, W \subseteq A \) with \(Z \subseteq W \), \(f(Z) \subseteq f(W) \)

\[\Rightarrow f(X) \subseteq f(X \cup Y) \quad \text{and} \quad f(Y) \subseteq f(X \cup Y) \]

\[\Rightarrow f(X) \cup f(Y) \subseteq f(X \cup Y). \]

\[\therefore f(X \cup Y) = f(X) \cup f(Y). \]

#5 Suppose \(x_1, x_2 \in X \) and \((f|_X)(x_1) = (f|_X)(x_2) \)

Then, by definition of \(f|_X \), \(f(x_1) = f(x_2) \).

\[\Rightarrow x_1 = x_2 \] since \(f \) is injective.

\[\Rightarrow f|_X \) is injective.

#6 If \(n=1 \) \(2^1-1 = 1 \).

Suppose \(1 + 2 + \ldots + 2^{k+1} = 2^k - 1 \).

Then \(1 + 2 + \ldots + 2^{k+1} + 2^k = 2^k - 1 + 2^k = 2^{k+1} - 1. \)

\[\therefore 1 + \ldots + 2^n = 2^{n+1} - 1 \] for all \(n \in \mathbb{N}. \)

#7 See last page of lecture 9.