1. Let V and W be two vector spaces over a field F and $T : V \to W$ a linear map. Prove that if T is a bijection then its inverse $T^{-1} : W \to V$ is linear as well.

Hints: you need to show that T^{-1} preserves addition and multiplication by scalars. To show that T^{-1} preserves addition, consider $w_1, w_2 \in W$. Show that that $w_1 = T(v_1), w_2 = T(v_2)$ for some $v_1, v_2 \in V$. Now compute $T^{-1}(w_1 + w_2) = T^{-1}(T(v_1) + T(v_2)) = ...

2. Let F be a field. Consider the map $T : F[x] \to F[x]$ defined by

 $$T(a_0 + a_1 x + \cdots + a_n x^n) = a_1 + 2a_2 x + \cdots + na_n x^{n-1}.$$

Here $2a_2 := a_2 + a_2$, $3a_3 := a_3 + a_3 + a_3$ and so on. (If $F = \mathbb{R}$ then T is the map that sends a polynomial to its derivative).

(a.) Prove that T is linear.

(b.) Is T injective? Prove your answer.

(c.) Prove that for $F = \mathbb{Q}$ the map T is onto. Is T onto if $F = \mathbb{Z}_2$? Prove your answer.

3. Let F be a field, $\alpha \in F$.

(a.) Prove that map $\varphi : F[x] \to F$ given by

 $$\varphi \left(\sum_{i=0}^{n} b_i x^i \right) := \sum_{i=0}^{n} b_i \alpha^i$$

is a homomorphism. The homomorphism φ is called the evaluation at α.

(b.) Prove that $\ker \varphi$ is the ideal $\langle x - \alpha \rangle$ consisting of all multiples of the polynomial $x - \alpha$.

Hint: division algorithm and/or one of its corollaries.

(c.) Prove that $F[x]/\langle x - \alpha \rangle$ is isomorphic to F. Hint: 1st isomorphism theorem should make it easy. There are other ways to do it, too.

4. Let F be a field and $I \subset F[x]$ an ideal. Prove that there is a polynomial $f \in F[x]$ so that $I = \langle f \rangle$. That is, prove that all elements of I are multiples of a single polynomial f.

Hints: what is f if $I = \{0\}$? Now assume $I \neq \{0\}$. Consider

$$W = \{ \deg p | p \in I, p \neq 0 \}.$$

Argue that W has the smallest element and pick $f \in I$ so that $\deg f = \min W$. Now argue as in the case of ideals in \mathbb{Z}.