1. Prove that for any two sets A and B

\[A \cap B \subset A \quad \text{and} \quad B \subset A \cup B. \]

2. (i) Prove that $A \cup (B \cup C) = (A \cup B) \cup C$ for any three sets A, B and C.

(ii) Prove that $A \cup \emptyset = A$ for any set $A \neq \emptyset$.

(It’s also true if $A = \emptyset$ but I am not asking you to prove it.)

(iii) Suppose A, B are two subsets of a set X. Prove that

\[(A \cap B)^c = A^c \cup B^c, \]

that is, that the complement of an intersection is the union of the complements.

3. Let X be a (nonempty) set. Show that

\[\mathcal{R} := \{(x, y) \in X \times X \mid x = y\} \]

is an equivalence relation on the set X.

4. Show that

\[\mathcal{R} := \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x \leq y\} \]

is a reflexive and transitive relation on the set \mathbb{R} of real numbers. Prove that \mathcal{R} is not symmetric. Is \mathcal{R} an equivalence relation? Explain.

5. Since the empty set \emptyset is a subset of every set, for any set X we have $\emptyset \subset X \times X$. Prove that for any nonempty set X,

\[\emptyset \subset X \times X \]

is not an equivalence relation.