1. Let K/F be a Galois extension. Two intermediate fields L_1, L_2 are called conjugate if there is $\sigma \in \text{Gal}(K/F)$ such that $\sigma(L_1) = L_2$. Characterize conjugate intermediate fields in terms of the corresponding subgroups of $\text{Gal}(K/F)$.

2. Consider the quaternion group Q_8 which as a set is given by $\{\pm 1, \pm i, \pm j, \pm k\}$ with multiplication determined by $i^2 = j^2 = k^2 = -1$ and $ij = k = -ji$. Let F be a field. Find a degree 4 polynomial $f(x) \in F[x]$ whose splitting field over F is Galois with Galois group isomorphic to Q_8 or show that no such polynomial exists.

[The following two exercises reprove one of the results we showed in class from a more high-brow point of view]

Let G be a group and M an abelian group. We call M a G-module if there is a map $G \times M \to M$ such that $1_g m = m$, $\sigma(\tau(m)) = (\sigma\tau)m$, $\sigma(m_1 + m_2) = \sigma(m_1) + \sigma(m_2)$ for all $m, m_1, m_2 \in M$ and $\sigma, \tau \in G$. Define the set of 1-cocyles of G with coefficients in M by

$$Z^1(G, M) := \{ f : G \to M | f(\sigma\tau) = f(\sigma) + \sigma f(\tau) \text{ for all } \sigma, \tau \in G \}$$

The 1-coboundaries of G with coefficients in M are defined to be the

$$B^1(G, M) := \{ f : G \to M | f(\sigma) = \sigma(a) - a \text{ for some } a \in M \}$$

3. Show that $Z^1(G, M)$ is an abelian group where $f + g$ is defined via point wise addition and show that $B^1(G, M)$ is a subgroup.

The first cohomology group of G with coefficients in M is defined to be

$$H^1(G, M) := Z^1(G, M)/B^1(G, M)$$

4. Let K/F be a Galois extension.

a) Show that K^\times is a $\text{Gal}(K/F)$-module via the natural Galois action.

b) Show that $H^1(\text{Gal}(K/F), K^\times) = 0$.

c) Use the previous result to reprove the following theorem from class: If K/F is a cyclic Galois extension of degree n with $\text{Gal}(K/F) = \langle \sigma \rangle$ and F contains a primitive n’th root of unity ζ_n then there exists $\alpha \in K^\times$ such that $\sigma(\alpha) = \zeta_n \alpha$.

1
5. Show that \(\cos(\pi/9) \) is algebraic over \(\mathbb{Q} \) and find \([\mathbb{Q}(\cos(\pi/9) : \mathbb{Q})]\).

6. Show that \(\mathbb{Q}(\cos(2\pi/n)) \) is Galois over \(\mathbb{Q} \) for every \(n \in \mathbb{Z} \geq 1 \). Decide if the same holds for \(\sin(2\pi/n) \).

7. Let \(\overline{\mathbb{F}}_p \) be an algebraic closure of \(\mathbb{F}_p \).

 a) Show that the Frobenius map \(\text{Fr}(x) = x^p \) is in \(\text{Aut}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \) and show that \(\text{Fr} \) is of infinite order.

 b) Find \(\sigma \in \text{Aut}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \) such that \(\sigma \notin \langle \text{Fr} \rangle \).

8. Let \(K/F \) be a Galois extension and \(L \) an intermediate field. Let \(N \subseteq K \) be the normal closure of \(L \) over \(F \). Prove that

\[
\text{Gal}(K/N) = \bigcap_{\sigma \in \text{Gal}(K/F)} \sigma \text{Gal}(K/L) \sigma^{-1}
\]

9. Let \(K/F \) be a Galois extension and \(L \) an intermediate field and let \(H = \text{Gal}(K/L) \). Consider the normalizer \(N_{\text{Gal}(K/F)}(H) \) and let \(L_0 \) denote its fixed field.

 a) Prove that \(L/L_0 \) is a Galois extension.

 b) Prove that if \(M \) is an intermediate field of \(L/F \) such that \(L/M \) is a Galois extension then \(M \supseteq L_0 \).

10. Throughout let \(G \) be a finite abelian group. Let \(\text{exp}(G) \) (the “exponent”) denote the least common multiple of the orders of the elements of \(G \).

 a) Show that there exists an element of \(G \) of order \(\text{exp}(G) \) and hence that \(\text{exp}(G) \) is the maximum of all the orders of elements in \(G \).

 b) Deduce that \(G \) is cyclic if and only if

\[
\text{exp}(G) = \#G
\]

 c) Let \(F \) be a field and \(H \) a finite subgroup of the group \(F^\times \). Show that \(H \) is cyclic.

 d) Let \(F \) be a field and suppose that \(\text{char}(F) \nmid n \). Show that there exists a primitive \(n \)'th root of unity in some finite extension of \(F \).