1) From the book: do problems 5.12, 5.13, 5.43, 5.54, 6.32. In problem 6.32, make sure to give a brief justification of your answer. It is good practice for exams, since you will have some T/F questions on every test.

2) Let $n \geq 3$ be an integer and let $\theta = 2\pi/n$. Let P_n be the regular n-gon with vertices $(\cos j\theta, \sin j\theta)$ for $j \in \mathbb{Z}_n$. In class we learned that the dihedral group D_n is the symmetry group of P_n, which consists of rotations ρ_j and reflections μ_j for $j \in \mathbb{Z}_n$. For this exercise ρ_j is taken to be the counterclockwise rotation around the origin by angle $j\theta$, and μ_j is the reflection across the line through the origin and the point $(\cos(j\theta/2), \sin(j\theta/2))$.

Find (and give at least some justification for) general formulas for $\rho_i \rho_j$, $\rho_i \mu_j$, $\mu_i \rho_j$, and $\mu_i \mu_j$ where the composition of motions $\sigma \tau$ is just τ followed by σ. For example, $\rho_i \rho_j = \rho_{i+j}$, where the addition of indices is mod n. You don’t need to reprove that D_n is a group. (*Hint: One distinction between a rotation and a reflection in this case is that reflection fixes the line through which one reflects, and rotation fixes no line unless it is rotation by 2π.)

3) a) Find all subgroups of the dihedral group D_4 (symmetries of the square).

b) Recall that the center $Z(G)$ of a group G is the set

$$Z(G) = \{x \in G \mid xy = yx \text{ for all } y \in G\},$$

and that it is a subgroup of G. Find the center of D_n for $n \geq 3$. (*Hint: use the formulas you found in problem 2. The answer depends on whether n is even or odd.)*

4) How hard was this homework for you? How long did it take?