Math 113 Homework 2, due 2/3/2012

1) Do problems 3.11, 3.15, 3.24, 3.33, 4.15, 4.21, 4.32, 4.38 from the book.

2) Let $n > 1$ be an integer and let \mathbb{Z}_n^* be the set of units in \mathbb{Z}_n, i.e. the elements $x \in \mathbb{Z}_n$ for which there exists $y \in \mathbb{Z}_n$ with $xy = 1$.

 a) Show that \mathbb{Z}_n^* with multiplication is a group.

 b) Make multiplication tables for \mathbb{Z}_8^*, \mathbb{Z}_{10}^*, and \mathbb{Z}_{12}^*.

 c) Show that $\mathbb{Z}_8^* \approx \mathbb{Z}_{12}^*$ but $\mathbb{Z}_8^* \not\approx \mathbb{Z}_{10}^*$ and $\mathbb{Z}_{10}^* \not\approx \mathbb{Z}_{12}^*$.

3) Let S_3 denote the group of permutations of 3 letters (where the binary operation is composition). Let x denote the cyclic permutation which sends $(1, 2, 3)$ to $(2, 3, 1)$, and let y denote the permutation which sends $(1, 2, 3)$ to $(2, 1, 3)$. Their corresponding permutation matrices are

 $$x = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 Prove that every permutation in S_3 is some product of x’s and y’s (i.e. x and y generate S_3). (Hint: note that $x^3 = y^2 = I$, the identity permutation.)

4) How hard was this homework for you? How long did it take?