1) Do problems 13.10, 13.11, 13.12, 17.4, 17.9, 18.9 from the book.

2) Suppose that \(\{p_n\} \) and \(\{q_n\} \) are Cauchy sequences in a set \(S \) with metric \(d \). Define \(a_n = d(p_n, q_n) \). Show that the sequence \(\{a_n\} \) converges.

3) Suppose that \(\{p_n\} \) is a Cauchy sequence in a set \(S \) with metric \(d \), and that some subsequence \(\{p_{n_k}\} \) converges to a point \(p \in S \). Prove that the full sequence \(\{p_n\} \) converges to \(p \).

4) Consider the function \(f : \mathbb{R} \to \mathbb{R} \) defined as follows: \(f(x) = x \) if \(x \in \mathbb{Q} \) and \(f(x) = 0 \) if \(x \notin \mathbb{Q} \). Show that \(f \) is continuous at 0 but at no other point.

Optional Problem (for fun): A real valued function \(f \) on an interval \(I \) is called convex if for all \(x, y \in I \), and \(0 < \lambda < 1 \) one has

\[
 f((1 - \lambda)x + \lambda y) \geq (1 - \lambda)f(x) + \lambda f(y).
\]

Suppose \(f \) is convex on \([a, b]\). Prove that \(f \) is continuous at \(x \) for \(a < x < b \), but need not be continuous at \(a \) or \(b \).

5) How difficult was this homework? How long did it take?