Wednesday December 5th

Recall Thm: If $\vec{F}(x,y,z)$ is defined on all of \mathbb{R}^3 and $\text{curl}(\vec{F}) = \vec{0}$, then \vec{F} is conservative.

Can use Stokes' Thm to prove this.

\vec{F} is conservative $\iff \int_C \vec{F} \cdot d\vec{r}$ for every closed path C.

Proof: Assuming $\text{curl}(\vec{F}) = \vec{0}$, show $\int_C \vec{F} \cdot d\vec{r} = 0$, for any C.

Let C be a simple closed path. Find a surface S which has C as its boundary curve. (For some curves it is not obvious, but it can be done). Then $\int_C \vec{F} \cdot d\vec{r} = \iint_S \text{curl}(\vec{F}) \cdot \vec{n} \, dS = 0$.

Note: This is why we need domains to be simply connected, so that we may find disks or other surfaces bounded by curves. In fact can use this to define a simply connected region of \mathbb{R}^3: E is simply connected if every simple closed curve $C \subseteq E$ is the boundary of a simple surface D inside E.

eg simply-connected: ball \cup cube \sqcup "fat sphere" \cup $x^2 + y^2 + z^2 \leq 2$.

not s-c: solid torus \cup as core curve doesn't bound a surface.
Q: Why does every simple closed curve \(C \subset \mathbb{R}^3 \) bound an orientable surface?

If \(C \) is not "knotted" then it bounds a disk, so problem is knotted curves. Leads to studying knot theory.

eg. \(\text{trefoil knot} \)

first guess: \(\text{but this surface is not orientable} \)