1. What are the dimensions of \(\text{null}(A) \) and \(\text{col}(A) \) for \(A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} \) ?

Sketch the kernel and image of associated linear transformation \(T(x) = Ax \).

2. Suppose the homogeneous system \(Ax = 0 \) has 10 equations and 12 variables. What dimensions can the solution space to this system have? If \(\text{null}(A) \) has dimension 2, does \(Ax = b \) have a solution for every \(b \) in \(\mathbb{R}^{10} \)?

3. Do elementary row operations change the row space of a matrix? That is, if \(B = EA \), where \(E \) is an elementary matrix, is \(\text{Row}(B) = \text{Row}(A) \)?

4. Show that \(\dim(\text{Row}(A)) = \dim(\text{Col}(A)) \).