1. Write $\begin{bmatrix} 5 \\ 5 \end{bmatrix}$ in coordinates from basis $B = \{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 2 \end{bmatrix} \}$

2. What is the dimension of the vector space $F(\{1, 2, 3, 4, 5\}, \mathbb{R})$ consisting of all functions from the set $\{1, 2, 3, 4, 5\}$ to \mathbb{R}?

3. What are the dimensions of the kernel and range of the linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $T(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}) = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$?

4. Suppose V is a p-dimensional vector space.
 (a) Is any linearly independent set of p vectors in V automatically a basis for V?
 (b) Is any set of p vectors in V that span V automatically a basis?