Volume Integrals

1. For the following problems, set up integrals which calculate the volume of the described solid. **DO NOT EVALUATE** these integrals.

 a. The solid obtained by rotating the region bounded by \(y = x^2 - 4x + 5, \ x = 1, \ x = 4, \) and \(y = 0 \) about the \(x \)-axis.

 \[
 r = x^2 - 4x + 5 \\
 A = \pi r^2 \\
 \int_1^4 \pi (x^2 - 4x + 5)^2 \, dx
 \]

 b. Determine the volume of the solid obtained by rotating the region bounded by \(y = x^2 - 2x \) and \(y = x \) about the line \(y = 4 \).

 \[
 r = 4 - x \\
 R = 1 - (x^2 - 2x) \\
 A = \pi R^2 - \pi r^2 \\
 \int_0^3 \pi \left(4 - x^2 + 2x \right)^2 - \pi (4 - x)^2 \, dx
 \]

 c. The solid obtained by rotating the region bounded by \(y = \sqrt{x} \) and \(y = \frac{x}{4} \) that lies in the first quadrant about the \(y \)-axis.

 \[
 r = \sqrt{x} \Rightarrow x = y^3 \\
 A = \pi R^2 - \pi r^2 \\
 \int_0^2 \pi (4y)^2 - \pi (y^3)^2 \, dy
 \]
(2) Let \(R \) be the region bounded by the graph of \(y = e^x \) and the \(x = 0 \) and \(x = 3 \). Using the disk/washer method, set up a “dy” integral for the volume of the solid formed by revolving \(R \) around the \(y \)-axis. (Hint: You will need 2 integrals).

\[
\int_1^3 \pi (3)^2 \, dy + \int_1^2 \pi (3)^2 - \pi (\ln y)^2 \, dy
\]

(3) Write a definite integral that represents the following volumes.

(a) Slices perpendicular to the \(x \)-axis are squares over the area bounded by \(2x - x^2 \) and the \(x \)-axis.

(b) Slices perpendicular to the \(x \)-axis are equilateral triangles over the area bounded by \(y = x \) and \(y = \sqrt{x} \).

(c) Slices perpendicular to the \(y \)-axis are equilateral triangles over the area bounded by \(y = x \) and \(y = \sqrt{x} \).

(4) (Not for turning in: if there is time) Compute the volume of a “rugby ball” if it has length 300 mm and circumference 600 mm and it is formed by rotating an ellipse about its major axis (these are actual official dimensions).