Part 1

1) A critical point of \(f(x) \) is a number \(c \) in the domain of \(f(x) \) such that \(f'(c) = 0 \) or DNE.

2) \(f(x) = 3x^2 - 12x + 9 = 3(x^2 - 4x + 3) = 3(x-1)(x-3) \)
\[f'(x) = 0 \implies x = 1 \text{ or } 3 \]

\(f(-1) = -16 \)
\(f(1) = 4 \)
\(f(3) = 0 \)
\(f(5) = 25 \)

\(\implies f(x) \) has an abs. max at \(x = 5 \)
and an abs. min at \(x = -1 \)
\[f'(x) = 3 (x + 4)^{2/3} + 3x \cdot \frac{2}{3} (x + 4)^{-1/3} \]
\[= (x + 4)^{-1/3} (3(x + 4) + 2x) = \frac{1}{\sqrt[3]{x+4}} (5x+12) \]

critical points: \(x = -4, x = -\frac{12}{5} \)

\[f(-4) = 0 \]
\[f(-\frac{12}{5}) = -3 \]
\[f(-1) = -3 \cdot \frac{23}{5} \]

\(\Rightarrow f(x) \) has an abs. max
\[a+ \text{ at } x = -4 \]

and an abs. min
\[a+ \text{ at } x = -\frac{12}{5}. \]

Part 2

1) \[f'(x) = (x - 1)(x - 2)^2 (x - 3) \]

\[f' \quad + \quad - \quad - \quad + \quad \to x \]

\[f \quad (\nearrow \quad \searrow \quad \searrow \quad \nearrow \quad \nearrow) \]

thus \(f(x) \) is increasing on \((-\infty, 1) \) and \((3, \infty)\)

and decreasing on \((1, 3)\)

local maxima at \(x = 1 \)

local minima at \(x = 3. \)
Thus $f(x)$ is increasing on $(-\infty, 0), (2.1, 3.9)$

and decreasing on $(0, 2.1)$ and $(3.9, 5.5)$

Local maxima at $x = 0, 3.9$

Local minima at $x = 2.1$

$$f(x) = \frac{\ln(x)}{3x} \quad \text{domain } x > 0$$

$$f'(x) = \frac{1 - \ln(x)}{3x^2}$$

Thus $f(x)$ is increasing on $(0, e)$

and decreasing on (e, ∞)

Local maxima at $x = e$

does not have local minima
\[f(x) = (x^2 + 1)e^{-x} \] is a differentiable function and it increases most rapidly (\(\Rightarrow \) absolute max of \(f'(x) \)).

\[f'(x) = 2xe^{-x} - e^{-x}(x^2 + 1) = -e^{-x}(x^2 - 2x + 1) \]
\[= -e^{-x}(x-1)^2 \]

So we want to find the absolute max of \(g(x) = -e^{-x}(x-1)^2 \)

\[g'(x) = e^{-x}(x^2 - 4x + 3) = e^{-x}(x-1)(x-3) \]

\[g' \quad + \quad - \quad + \quad + \]

so at \(x = 1 \) \(g(x) \) has a local maxima, but is it absolute maxima? we know that \(g(x) \) looks like this

so we need to find out if this part outgrows \(g(x) \)

at \(x = 1 \) \(g(1) = 0 \) and \(\lim_{x \to \infty} g(x) = 0 \)

so \(g(x) \) has absolute maxima at \(x = 1 \) and looks roughly like...
$f'(x)$ (or $g(x)$)

$f(x)$