Solutions to worksheet 3

1. Show $E(h) = 4h$ has limit 0 at 0.

We need to show:

given $\epsilon > 0$, there exists $\delta > 0$ so that
if $0 < |h| < \delta$, then $|E(h)| < \epsilon$.

Suppose $\epsilon = 0.8$

If we want $|E(h)| < 0.8$, or $-0.8 \leq 4h \leq 0.8$,
then we need to take: $-0.2 \leq h \leq 0.2$

So δ can be 0.2 (or smaller).

General strategy: let $\delta = \epsilon/4$

Then given ϵ, let $\delta = \epsilon/4$.
If $0 < |h| < \delta$, then $|E(h)| = 14h| < 4\delta = \epsilon.$
2. Show \(E(h) = h^2 \) has limit 0 at 0.

Suppose \(\varepsilon = \frac{1}{100} \).

If we want \(|E(h)| < \frac{1}{100} \),

we want

\[-\frac{1}{100} < h^2 < \frac{1}{100},\]

red herring (irrelevant)

Since

\(h^2 > 0 \)

for all \(h \)

we need

\[|h| < \frac{1}{10}. \]

General strategy: let \(\delta = \sqrt{\varepsilon} \).

Then given \(\varepsilon \), let \(\delta = \sqrt{\varepsilon} \).

Then if \(0 < |h| < \delta \), then \(|E(h)| = |h^2| < \delta^2 = \varepsilon \).

3. We have a frequency function \(F(p) \) that depends on pressure. We need frequencies within \(\varepsilon \) of 60.

Any pressure in the range \((20-a, 20+b)\) shown in the diagram will suffice.

Pick \(\delta = \min(a, b) \).

Then \((20-\delta, 20+\delta)\) is a subset of \((20-a, 20+b)\), so any pressure in this range will suffice.
Find largest \(\delta \) that will work for \(\epsilon = 0.6 \) in \(\lim_{x \to 2.5} f(x) = 3 \).

As before, we see that to get \(f(x) \) in \((2.4, 3.6)\), we need to choose \(x \) in \((1.6, 3.1)\).

To find \(\delta \), find an interval that is symmetric about 2.5 that is contained in \((1.6, 3.1)\):

Symmetric interval: \((-1.9, 3.1)\)

So \(\delta \) could be 0.6.

Note: any smaller \(\delta \) will also work:

\((2.499, 2.501)\) is also contained in \((1.6, 3.1)\).

\(\delta\)

To check that \(\lim_{x \to a} f(x) = L \),

we need to check that \(E(\epsilon) = |f(a+h) - L| \)

has limit 0 as \(h \to 0 \).

For \(\lim_{x \to 2} (4x + 10) = 18 \)

\(E(\epsilon) = |4(2+h) + 10 - 18| \)

\(= 4\epsilon \)

We saw in problem 1 that \(4\epsilon \) has limit 0 as \(h \to 0 \), so we're done.
(6) Show \(\lim_{x \to 3} (x^2) = 9 \).

We need to check that
\[
E(h) = f(3+h) - L \text{ has limit } 0 \text{ at } 0
\]

\[
E(h) = (3+h)^2 - 9 \\
= 9 + 6h + h^2 - 9 \\
= 6h + h^2.
\]

We saw that \(h^2 \) has limit 0 at 0. in prob(2).
We saw that 4h has limit 0 at 0 in prob(1),
and the proof is the same.

Since \(E(h) \) is the sum of two functions with limit 0 at 0, \(E(h) \) also has limit 0 at 0,
by the sum rule.