Math 221
Week 5 part 1

Implicit differentiation

Please take a moment to just breathe.

Equations of curves
Consider the unit circle $x^2 + y^2 = 1$.
The graph is the set of all points (x, y) that satisfy the equation.

We discuss implicit differentiation and logarithmic differentiation.
However, there’s no formula of the form \(y = f(x) \) that describes the entire curve. Instead, we need two functions:

- \(y = \sqrt{1 - x^2} \) for the top half circle
- \(y = -\sqrt{1 - x^2} \) for the bottom half circle

Method of Implicit differentiation (for implicit curves in variables \(x \) and \(y \))

Step 1. Take the derivative with respect to \(x \) on both sides of the equation.
Step 2. Solve for \(\frac{dy}{dx} \).

Find the derivative \(\frac{dy}{dx} \) for the curve \(x^2 + y^2 = 1 \).

Step 1. Take the derivative with respect to \(x \) on both sides:

\[
\frac{d}{dx}[x^2 + y^2] = \frac{d}{dx}[1] \\
2x + \frac{d}{dx}[y^2] = 0 \\
2x + 2y \frac{dy}{dx} = 0 \\
2x + 2y \frac{dy}{dx} = 0
\]

Think of \(y \) as a function of \(x \) and use chain rule:

\[
\frac{d}{dx}[y^2] = 2y \frac{dy}{dx}
\]

Step 2. Solve for \(\frac{dy}{dx} \).

\[
2x + 2y \frac{dy}{dx} = 0 \\
2y \frac{dy}{dx} = -2x \\
\frac{dy}{dx} = \frac{-x}{y}
\]
Example. Find the tangent line to the curve $x^2 + y^2 = 1$ at the point $(1/2, \sqrt{3}/2)$.

We calculated that \(\frac{dy}{dx} = -\frac{x}{y} \) at the point \((x, y)\).

The slope of the tangent line at the point \((1/2, \sqrt{3}/2)\) is \(\frac{dy}{dx} = -\frac{1/2}{\sqrt{3}/2} = -\frac{1}{\sqrt{3}} \).

The equation of the tangent line is \(y - \frac{\sqrt{3}}{2} = -\frac{1}{\sqrt{3}}(x - \frac{1}{2}) \).

Example. Folium of Descartes

In France, in the 17th century, mathematicians would exchange challenges for fun.

Fermat claimed: I can find a tangent line to anything!

Descartes responded: Oh yeah? Try this: \(x^3 + y^3 = 3xy \)

Folium of Descartes

Use the method of implicit differentiation to find \(\frac{dy}{dx} \) for \(x^3 + y^3 = 3xy \)

(Please pause the video and try it yourself.)

Folium of Descartes

Use the method of implicit differentiation to find \(\frac{dy}{dx} \).

Step 1. Take derivatives on both sides.

\[
\frac{d}{dx} [x^3 + y^3] = 3x^2 \frac{dy}{dx}
\]

Product and Chain rules:

\[
\frac{d}{dx} [xy] = (1)y + x \frac{dy}{dx}
\]

\[
3x^2 + 3y^2 \frac{dy}{dx} = 3(1)y + 3x \frac{dy}{dx}
\]
Folium of Descartes

Step 2. Solve for $\frac{dy}{dx}$:

$$3x^2 + 3y^2 \frac{dy}{dx} = 3(1)y + 3x \frac{dy}{dx}$$

$$x^2 + y^2 \frac{dy}{dx} = y + x \frac{dy}{dx}$$

$$y^2 \frac{dy}{dx} - x \frac{dy}{dx} = y - x^2 \quad \text{so} \quad \frac{dy}{dx} = \frac{y - x^2}{y^2 - x}$$

Find the mistake:

Use implicit differentiation on

$$2y + \cos x + x^2y + \sin(4y) = 1$$

Step 1: We take the derivative with respect to x:

INCORRECT answer:

$$2 - \sin x + 2x \frac{dy}{dx} + 4 \cos(4y) \frac{dy}{dx} = 1$$

Where are the three mistakes?
(Please pause the video and look for them.)

CORRECT answer:

$$2 \frac{dy}{dx} - \sin x + 2xy + x^2 \frac{dy}{dx} + 4 \cos(4y) \frac{dy}{dx} = 0$$

Use implicit differentiation on

$$2y + \cos x + x^2y + \sin(4y) = 1$$

Step 1: We take the derivative with respect to x:

INCORRECT answer:

$$2 - \sin x + 2x \frac{dy}{dx} + 4 \cos(4y) \frac{dy}{dx} = 1$$

- forgot to use chain rule
- incorrect use of product rule
- derivative of a constant is 0

CORRECT answer:

$$2 \frac{dy}{dx} - \sin x + 2xy + x^2 \frac{dy}{dx} + 4 \cos(4y) \frac{dy}{dx} = 0$$