Kuratowski’s Theorem

A Kuratowski graph is a subdivision of K_5 or $K_{3,3}$. It follows from Euler’s Formula that neither K_5 nor $K_{3,3}$ is planar. Thus every Kuratowski graph is nonplanar. Our goal is to prove the following classic theorem.

Theorem 1 (Kuratowski, 1930). A graph G is planar if and only if G does not contain a Kuratowski subgraph.

The “only if” part is already proved. Let us prove the “if” part.

Claim 2. For every graph G and any $xy \in E(G)$, if G does not contain a Kuratowski subgraph, then G/xy also doesn’t.

Proof. Suppose that G/xy contains a Kuratowski subgraph H. Let z be the vertex resulting from contracting x with y. If $z \notin V(H)$, then H is a Kuratowski subgraph of G. If $z \in V(H)$ but is not a branch vertex of H, then we can obtain a Kuratowski subgraph H' of G by replacing z in H with either x, or y, or $\{x, y\}$. The same holds if z is a branch vertex of H, and at most one edge of H incident with z is incident with x in G. Thus the remaining case is that H is a subdivision of K_5 and exactly two edges of H incident with z are incident with x in G (see Fig. 1 (left)).

![Figure 1](image)

Then G contains a subdivision of $K_{3,3}$ as in Fig. 1 (right). □

First, we will prove a stronger statement for 3-connected graphs. A convex embedding of a planar graph G is one in which every edge of G forms a straight segment and every face (including the outer face) is a convex polygon. Not every planar graph has a convex embedding; for example, $K_{2,4}$ has not.

Theorem 3 (Tutte). Every 3-connected graph with no Kuratowski subgraph has a convex embedding in the plane with no three vertices on a line.

Proof. By induction on $n := |V(G)|$. If $n \leq 4$, then the only 3-connected graph is K_4, and K_4 has such embedding.

Suppose the theorem holds for all graphs with at most $n - 1$ vertices. Let G be any n-vertex 3-connected graph with no Kuratowski subgraph. By Contraction Lemma (7.2.7 in the book), G has an edge xy such that $H := G/xy$ is 3-connected. By Claim 2, H has no
Kuratowski subgraph. So by the IH, H has a convex embedding in the plane with no three vertices on a line. Fix such an embedding. Let z be the result of contracting xy and H' be obtained from H by deleting all edges incident with z. Since $H' - z$ is 2-connected, the face C of H' containing z is a cycle. Let x_1, \ldots, x_k be the neighbors of x on C in cyclic order. If there is some i such that all neighbors of y on C are in the portion of C between x_i and x_{i+1}, then we can obtain a convex embedding of G with no three vertices on a line by placing x into the position of z and placing y very close to x. If this does not happen, then either (a) y and x have 3 common neighbors, say u, v, w, or (b) for some $i < j$, y has a neighbor v on C between x_i and x_j (in clockwise order) and a neighbor u between x_j and x_i.

In Case (a) we have a K_5-subdivision and in Case (b) we have a $K_{3,3}$-subdivision. □

In order to prove Theorem 1, it is now enough to show the following.

Lemma 4. If G has the fewest vertices among the nonplanar graphs with no Kuratowski subgraphs, then G is 3-connected.

Proof. We need the following simple observation:

(**) If F is a face in an embedding of a graph G in the plane, then there is an embedding of G in the plane where F the outer face.

If G is disconnected, then by the minimality of G, each of its components could be embedded in the plane. The union of these embeddings will be an embedding of G. Suppose G has a cut vertex x and H is a component of $G - x$. Let $H_1 = G[V(H) + x]$ and $H_2 = G - H$. By the minimality of G, each of H_1 and H_2 could be embedded in the plane. Then by (**), each of H_1 and H_2 has an embedding in the plane such that x is on the outer face. Stretching each of these embeddings so that each of the graphs is in one half-plane passing through x, we can then glue them into an embedding of G.

Suppose now that G is 2-connected and that sets $V_1, V_2 \subseteq V(G)$ and vertices x, y are such that $V_1 \cup V_2 = V(G)$, $V_1 \cap V_2 = \{x, y\}$ and there are no edges between $V_1 - x - y$ and $V_2 - x - y$. For $i = 1, 2$, let G_i be the graph obtained from $G[V_i]$ by adding edge xy. If both G_1 and G_2 are planar, then by (**), there are their embeddings with edge xy on the outer face. Again, we can stretch these embeddings so that we can glue them along xy and get an embedding of G. Thus we may assume that G_1 is not planar. By the minimality of G, G_1 contains a Kuratowski subgraph H. Since G does not contain Kuratowski subgraphs, H contains edge xy. So we can get a Kuratowski subgraph H' of G from H be replacing xy with an x, y-path in $G[V_2]$. Such an x, y-path exists, since G is 2-connected and so each of x and y has a neighbor in every component of $G - x - y$. □