Let $[k] := \{1, \ldots, k\}$. We consider simple graphs and follow the notation in [2]. An edge k-coloring of a graph G is a mapping $\phi : E(G) \rightarrow [k]$ such that $\phi(e) \neq \phi(e')$ for any two edges e, e' sharing a vertex. In other words, for every $1 \leq i \leq k$, the color class $\phi^{-1}(i)$ is a matching. The edge chromatic number, $\chi'(G)$, of G is the smallest positive integer k such that G has an edge k-coloring. The classical result is:

Theorem 1 (Vizing [1]) For every simple graph G, $\chi'(G) \leq \Delta(G) + 1$.

We present a proof of Theorem 1 due to Ehrenfeucht, Faber and Kierstead.

Proof of Theorem 1: For $\Delta(G) = D \in \{1, 2\}$ the proof is easy. Let $D \geq 3$. We use induction on the number of vertices of degree at least 2. Let G be a minimum counter-example with $\Delta(G) = D \geq 3$. Let $v \in V(G)$ with $d_G(v) \geq 2$ and let $X = \{x_1, \ldots, x_t\}$ be the set of neighbors of v of degree at least 2. If $t \leq 1$, then let G' be obtained from G by deleting v and its neighbors of degree 1. By the minimality of G, G' has an edge-$(D + 1)$-coloring ϕ which we greedily extend to an edge-$(D + 1)$-coloring of G.

So, suppose $t \geq 2$ and now let G' be obtained from G by first deleting v and its neighbors of degree 1, and then adding new vertices of degree 1 (if needed) so that the degree of each of v_1, \ldots, v_t in G' is $D - 1$. Since G' has fewer vertices of degree 1 than G, by the minimality of G, G' has an edge-$(D + 1)$-coloring ϕ.

For every $v \in V(G')$, let $O(v) = O_\phi(v)$ denote the set of colors in $[D + 1]$ not used to color the edges incident to v. Then $|O(x_i)| = 2$ for all $i = 1, \ldots, t$.

For every color $\alpha \in [D + 1]$ and an edge-$(D + 1)$-coloring ϕ of G', let $h_\phi(\alpha)$ the number of $O(x_i)$ containing α. Among all edge-$(D + 1)$-colorings of G', choose a coloring ψ with the minimum $\sum_{j=1}^{D+1} h_\psi^2(j)$.

Let $G'(\alpha, \beta)$ denote the subgraph of G' formed by the edges of colors α and β in ψ. Our main claim is

Claim 1 For every $\alpha, \beta \in [D + 1]$, $|h(\alpha) - h(\beta)| \leq 2$.

Proof: Suppose $\alpha, \beta \in [D + 1]$ and $h(\alpha) - h(\beta) \geq 3$. Then $G'(\alpha, \beta)$ contains a component that is a path P starting from a vertex $x_i \in X$ with the first edge of color α either its second end is not in X or it is in X and the last edge of P also has color α. In the first case, $h(\alpha)$ decreases by 1 and $h(\beta)$ increases by 1. In the second case, $h(\alpha)$ decreases by 2 and $h(\beta)$ increases by 2. In both cases, $\sum_{j=1}^{D+1} h_\psi^2(j)$ decreases, contradicting the choice of ψ. □

Claim 1 immediately implies:

Claim 2 For every $\alpha \in [D + 1]$, $h(\alpha) \leq 3$, and if there is $\alpha \in [D + 1]$ with $h(\alpha) = 3$, then $h(\beta) \geq 1$ for every $\beta \in [D + 1]$.

A $[\beta, \gamma]$-path in G is a path whose edges are alternately colored with β and γ.

Case 1: $h(\alpha) \leq 2$ for every $\alpha \in [D + 1]$. Let H be the bipartite graph whose partite sets are X and $[D + 1]$ and $x_i \alpha \in E(H)$ iff $\alpha \in O_\psi(x_i)$. Then $d_H(x_i) = 2$ for every $i = 1, \ldots, t$ and $d_H(\alpha) \leq 2$ for every $\alpha \in [D + 1]$. By Hall’s Theorem, H has a matching M covering X. If $M = \{x_1 \alpha_1, \ldots, x_t \alpha_t\}$, then we can color edge vw_i with α_i for every $i = 1, \ldots, t$.

Case 2: $h(\gamma_1) = 3$ for some $\gamma_1 \in [D + 1]$. Then by Claim 2, each of the $D + 1$ colors is present in some $O(x_j)$. We then find colors for the edges incident with v one by one.

1
Step 1: Since $D + 1 > t$, $h(\alpha_1) = 1$ for some color α_1. We may assume that $O(x_1) = \{\alpha_1, \beta_1\}$. We will color vx_1 with α_1 and let $X_1 = X - x_1$. Furthermore, if $h(\beta_1) \geq 2$, then we let $h_1(\gamma) = \{h(\gamma), \text{ if } \gamma \neq \beta_1; h(\beta_1) - 1, \text{ if } \gamma = \beta_1\}$. If $h(\beta_1) = 1$, then there are two vertices $x, x' \in X_1$ such that $\gamma_1 \in O(x) \cap O(x')$. For at least one of them the $[\gamma_1, \beta_1]$-path starting at it ends not at x_1. After recoloring this path, $h(\gamma_1)$ decreases by 1 or 2 and $h(\beta_1)$ increases by 1 or 2.

Step $i (i = 2, \ldots, t)$: If $h_{i-1}(\alpha) \leq 2$ for every $\alpha \in [D + 1] - \{\alpha_1, \ldots, \alpha_{i-1}\}$, then we use Hall’s Theorem as in Case 1. If $h(\gamma_i) = 3$ for some $\gamma_i \in [D + 1] - \{\gamma_1, \ldots, \gamma_{i-1}\}$, then each of the $D + 1 - (i - 1)$ colors in $[D + 1] - \{\gamma_1, \ldots, \gamma_{i-1}\}$ is present in some $O(x_j)$. Then we essentially repeat Step 1 with i in place of 1. □

References
