1. Prove that every graph with maximum degree at most 3 is totally-5-colorable using the following plan. Suppose G is a minimum counter-example.
 a) Prove that G has no cut edges;
 b) Prove that G is 3-regular;
 c) Conclude that $E(G)$ has a perfect matching M and color M with Color 5;
 d) Color everything else with 1, 2, 3, 4: First, color the vertices and then use list edge coloring.

2. Let G be a graph, $A \subset V(G)$ be an independent set in G and $B = V(G) - A$. Let G'_A be the digraph obtained from G by orienting the edges connecting A with B arbitrarily and replacing each edge $xy \in E(G[B])$ with the pair $\{xy, yx\}$ of opposite directed edges. Prove that G'_A is kernel-perfect. (Comment: This is a generalization of Richardson’s Theorem on orientations of bipartite graphs.) (Hint: Modify the proof of Richardson’s Theorem given in class.)

3. Problem 3.4.11 in the book.

5. Prove that every simple plane 3-connected graph has either a 3-vertex incident with a face of length at most 5 or a 3-face incident with a vertex of degree at most 5.

6. Problem 3.4.31 in the book. (Hint: For arbitrary edges A and B in H, bound the probability that in a random permutation the last vertex of A is the first vertex of B.)