List coloring

Part 5.2
Lemma 5.3 (Small Pot Lemma): If $\chi_{\ell}(G) > k$, then there is a k-uniform list L s.t.

(a) G has no L-coloring and
(b) for each $\alpha \in \bigcup_{v \in V(G)}$ one can assign a vertex $v_\alpha \in V(G)$ s.t. $\alpha \in L(v_\alpha)$ and all v_α are distinct.

In particular, there is a k-uniform list L s.t.

$|\bigcup_{v \in V(G)} L(v)| < |V(G)|$ and G has no L-coloring.
Lemma 5.3 (Small Pot Lemma): If $\chi_\ell(G) > k$, then there is a k-uniform list L s.t.
(a) G has no L-coloring and
(b) for each $\alpha \in \bigcup_{v \in V(G)}$ one can assign a vertex $v_\alpha \in V(G)$ s.t. $\alpha \in L(v_\alpha)$ and all v_α are distinct.

In particular, there is a k-uniform list L s.t. $|\bigcup_{v \in V(G)} L(v)| < |V(G)|$ and G has no L-coloring.

Proof. Among all k-uniform lists L s.t. G has no L-coloring, choose with the smallest $|U|$ where $U = \bigcup_{v \in V(G)} L(v)$. Consider the auxiliary bigraph $H = H_L$ with parts U and $V(G)$, where $\alpha v \in E(H)$ iff $\alpha \in L(v)$.
Lemma 5.3 (Small Pot Lemma): If $\chi_\ell(G) > k$, then there is a k-uniform list L s.t.
(a) G has no L-coloring and
(b) for each $\alpha \in \bigcup_{v \in V(G)}$ one can assign a vertex $v_\alpha \in V(G)$ s.t. $\alpha \in L(v_\alpha)$ and all v_α are distinct.

In particular, there is a k-uniform list L s.t.
$|\bigcup_{v \in V(G)} L(v)| < |V(G)|$ and G has no L-coloring.

Proof. Among all k-uniform lists L s.t. G has no L-coloring, choose with the smallest $|U|$ where $U = \bigcup_{v \in V(G)} L(v)$.
Consider the auxiliary bigraph $H = H_L$ with parts U and $V(G)$, where $\alpha v \in E(H)$ iff $\alpha \in L(v)$.

If H has no matching covering U, then by Hall, there is a minimum $T \subseteq U$ s.t. $|N_H(T)| < |T|$. By the definition of U, $d_H(\alpha) \geq 1$ for each $\alpha \in U$. So, $|T| \geq 2$.
Let $A = N_H(T)$. By the minimality of T, $|A| = |T| - 1$, and $H[T \cup A]$ has a matching F covering A.

This matching defines an L-coloring of $G[A]$ (with all colors distinct). So, since G is not L-colorable, $A \neq V(G)$.
Let $A = N_H(T)$. By the minimality of T, $|A| = |T| - 1$, and $H[T \cup A]$ has a matching F covering A.

This matching defines an L-coloring of $G[A]$ (with all colors distinct). So, since G is not L-colorable, $A \neq V(G)$.

The lists of all vertices in $V(G) - A$ are disjoint from T. Fix some $u \in V(G) - A$.
Define $L'(v) = L(v)$ for $v \in V(G) - A$ and $L'(v) = L(u)$ for $v \in A$.
Let $A = N_H(T)$. By the minimality of T, $|A| = |T| - 1$, and $H[T \cup A]$ has a matching F covering A.

This matching defines an L-coloring of $G[A]$ (with all colors distinct). So, since G is not L-colorable, $A \neq V(G)$.

The lists of all vertices in $V(G) - A$ are disjoint from T. Fix some $u \in V(G) - A$.
Define $L'(v) = L(v)$ for $v \in V(G) - A$ and $L'(v) = L(u)$ for $v \in A$.

Since $\bigcup_{v \in V(G)} L'(v) = U - T$, by the minimality of U, G has an L'-coloring F'.
Then coloring f where $f(v) = F'(v)$ for $v \in V(G) - A$ and $f(v) = F(v)$ for $v \in A$ is an L-coloring G, a contradiction. \qed
Let $A = N_H(T)$. By the minimality of T, $|A| = |T| - 1$, and $H[T \cup A]$ has a matching F covering A.

This matching defines an L-coloring of $G[A]$ (with all colors distinct). So, since G is not L-colorable, $A \neq V(G)$.

The lists of all vertices in $V(G) - A$ are disjoint from T. Fix some $u \in V(G) - A$.
Define $L'(v) = L(v)$ for $v \in V(G) - A$ and $L'(v) = L(u)$ for $v \in A$.

Since $\bigcup_{v \in V(G)} L'(v) = U - T$, by the minimality of U, G has an L'-coloring F'.
Then coloring f where $f(v) = F'(v)$ for $v \in V(G) - A$ and $f(v) = F(v)$ for $v \in A$ is an L-coloring G, a contradiction. \hfill \Box

The lemma tells us that it is enough to try a bounded number of distinct lists for a given graph.
Let n_k be the minimum s s.t. $\chi_{\ell}(K_s,s) \geq k + 1$.
Let $m(r,2)$ be the minimum number of edges in an r-uniform non-2-colorable hypergraph.
Let n_k be the minimum s s.t. $\chi_\ell(K_{s,s}) \geq k + 1$. Let $m(r, 2)$ be the minimum number of edges in an r-uniform non-2-colorable hypergraph.

Theorem 5.4 (Erdős, Rubin and Taylor 1979).

$m(k, 2) \leq n_{2k} \leq 2m(k, 2)$.
Let n_k be the minimum s s.t. $\chi_\ell(K_{s,s}) \geq k + 1$.

Let $m(r,2)$ be the minimum number of edges in an r-uniform non-2-colorable hypergraph.

Theorem 5.4 (Erdős, Rubin and Taylor 1979).

$m(k,2) \leq n_{2k} \leq 2m(k,2)$.

Proof. Let H be a non-2-colorable k-graph with $m(k,2)$ edges. Let $G = K_{m(k,2),m(k,2)}$ with parts V_1 and V_2 in which each partite set is $E(H)$. For each $e \in V(G)$, let $L(e) = \{v \in V(H) : v \in e\}$.
Let n_k be the minimum s s.t. $\chi_\ell(K_s,s) \geq k + 1$.
Let $m(r, 2)$ be the minimum number of edges in an r-uniform non-2-colorable hypergraph.

Theorem 5.4 (Erdős, Rubin and Taylor 1979).
$m(k, 2) \leq n_{2k} \leq 2m(k, 2)$.

Proof. Let H be a non-2-colorable k-graph with $m(k, 2)$ edges.
Let $G = K_{m(k,2),m(k,2)}$ with parts V_1 and V_2 in which each partite set is $E(H)$. For each $e \in V(G)$, let $L(e) = \{v \in V(H) : v \in e\}$.

Suppose G has an L-coloring f. Let $C_1 = f(V_1)$, $C_2 = f(V_2)$, and $C_0 = \bigcup_{e \in V(G)} f(e) - C_1 - C_2$.
Then in H we can color $C_0 \cup C_1$ with color 1 and C_2 with color 2.
Suppose now that $G = K_{n_k,n_k}$ with parts V_1 and V_2, and L is a k-uniform list for G s.t. G is not L-colorable.
Let $V(H) = \bigcup_{v \in V(G)} L(v)$ and $E(H) = \{L(v) : v \in V(G)\}$.
Suppose now that $G = K_{n_k,n_k}$ with parts V_1 and V_2, and L is a k-uniform list for G s.t. G is not L-colorable.

Let $V(H) = \bigcup_{v \in V(G)} L(v)$ and $E(H) = \{L(v) : v \in V(G)\}$.

If H were 2-colorable, let C_1 and C_2 be the color classes. By definition, for each $v \in V(G)$, there is a $c_1(v) \in L(v) \cap C_1$ and a $c_2(v) \in L(v) \cap C_2$.

For $i \in [2]$ and $v \in V_i$, we let $f(v) = c_i(v)$. This gives an L-coloring of G, a contradiction. \qed
Proposition 5.5 (Erdős). \(m(k, 2) \geq 2^{k-1}. \)
Proposition 5.5 (Erdős). $m(k, 2) \geq 2^{k-1}$.

Proof. Let H be a k-graph with $m < 2^{k-1}$ edges. Color every vertex with 1 with probability $1/2$ and with 2 with probability $1/2$ independently of each other. The probability of each edge to be monochromatic is 2^{1-k}.
Proposition 5.5 (Erdős). $m(k, 2) \geq 2^{k-1}$.

Proof. Let H be a k-graph with $m < 2^{k-1}$ edges. Color every vertex with 1 with probability $1/2$ and with 2 with probability $1/2$ independently of each other. The probability of each edge to be monochromatic is 2^{1-k}.

Hence the expected number of monochromatic edges is $\frac{m}{2^{k-1}} < 1$. Therefore, there is a coloring with less than one monochromatic edges.

\qed
Theorem 5.6 (Erdős). $m(k, 2) \leq 4k^2 2^k$.

Proof. Let $|R| = 2k^2$ and H_k be a random k-graph with vertex set R obtained by placing $m = 4k^2 2^k$ random edges on R independently from each other (repetitions are possible).

Claim: With positive probability, $\alpha(H_k) < k^2$.

Let p_0 be the probability of the event $\alpha(H_k) \geq k^2$.

Fix $S \subset R$ with $|S| = k^2$. The probability that S is independent in H_k is $p_1 = \left(1 - \left(\frac{k}{k^2}\right)^{2k^2}\right)^{m}$. (1)
Theorem 5.6 (Erdős). $m(k, 2) \leq 4k^22^k$.

Proof. Let $|R| = 2k^2$ and H_k be a random k-graph with vertex set R obtained by placing $m = 4k^22^k$ random edges on R independently from each other (repetitions are possible).
Theorem 5.6 (Erdős). \(m(k, 2) \leq 4k^22^k \).

Proof. Let \(|R| = 2k^2\) and \(H_k \) be a random \(k \)-graph with vertex set \(R \) obtained by placing \(m = 4k^22^k \) random edges on \(R \) independently from each other (repetitions are possible).

Claim: With positive probability, \(\alpha(H_k) < k^2 \).

Let \(p_0 \) be the probability of the event \(\alpha(H_k) \geq k^2 \).

Fix \(S \subset R \) with \(|S| = k^2\). The probability that \(S \) is independent in \(H_k \) is

\[
p_1 = \left(1 - \frac{k^2}{2k^2} \right)^m.
\]
(1)
We have

\[
\binom{k^2}{k} \binom{2k^2}{k} = \frac{k^2 \cdot (k^2 - 1) \cdots \cdot (k^2 - k + 1)}{2k^2 \cdot (2k^2 - 1) \cdots \cdot (2k^2 - k + 1)}
\]

\[
\geq \frac{1}{2} \left(\frac{k^2 - k + 1}{2k^2 - k + 1} \right)^{k-1} = \frac{1}{2^k} \left(\frac{2k^2 - 2k + 2}{2k^2 - k + 1} \right)^{k-1}
\]
We have

\[
\frac{\binom{k^2}{k}}{\binom{2k^2}{k}} = \frac{k^2 \cdot (k^2 - 1) \cdot \ldots \cdot (k^2 - k + 1)}{2k^2 \cdot (2k^2 - 1) \cdot \ldots \cdot (2k^2 - k + 1)}
\]

\[
\geq \frac{1}{2} \left(\frac{k^2 - k + 1}{2k^2 - k + 1} \right)^{k-1} = \frac{1}{2^k} \left(\frac{2k^2 - 2k + 2}{2k^2 - k + 1} \right)^{k-1}
\]

\[
= \frac{1}{2^k} \left(1 - \frac{k - 1}{2k^2 - k + 1} \right)^{k-1} \geq \frac{1}{2^k} \left(1 - \frac{(k - 1)^2}{2k^2 - k + 1} \right) > \frac{1}{2^{k+1}}.
\]
We have

\[
\frac{\binom{k^2}{k}}{\binom{2k^2}{k}} = \frac{k^2 \cdot (k^2 - 1) \ldots \cdot (k^2 - k + 1)}{2k^2 \cdot (2k^2 - 1) \ldots \cdot (2k^2 - k + 1)}
\]

\[\geq \frac{1}{2} \left(\frac{k^2 - k + 1}{2k^2 - k + 1} \right)^{k-1} = \frac{1}{2^k} \left(\frac{2k^2 - 2k + 2}{2k^2 - k + 1} \right)^{k-1}
\]

\[= \frac{1}{2^k} \left(1 - \frac{k - 1}{2k^2 - k + 1} \right)^{k-1} \geq \frac{1}{2^k} \left(1 - \frac{(k - 1)^2}{2k^2 - k + 1} \right) > \frac{1}{2^{k+1}}.
\]

So

\[p_1 \leq \left(1 - \frac{1}{2^{k+1}} \right)^m \leq \exp \left\{ -\frac{m}{2^{k+1}} \right\} \leq \exp \left\{ -\frac{4k^22^k}{2^{k+1}} \right\} = e^{-2k^2}.
\]
We have
\[
\frac{\binom{k^2}{k}}{\binom{2k^2}{k}} = \frac{k^2 \cdot (k^2 - 1) \cdots \cdot (k^2 - k + 1)}{2k^2 \cdot (2k^2 - 1) \cdots \cdot (2k^2 - k + 1)}
\]
\[
\geq \frac{1}{2} \left(\frac{k^2 - k + 1}{2k^2 - k + 1} \right)^{k-1} = \frac{1}{2^k} \left(\frac{2k^2 - 2k + 2}{2k^2 - k + 1} \right)^{k-1}
\]
\[
= \frac{1}{2^k} \left(1 - \frac{k - 1}{2k^2 - k + 1} \right)^{k-1} \geq \frac{1}{2^k} \left(1 - \frac{(k - 1)^2}{2k^2 - k + 1} \right) > \frac{1}{2^{k+1}}.
\]
So
\[
p_1 \leq \left(1 - \frac{1}{2^{k+1}} \right)^m \leq \exp \left\{ - \frac{m}{2^{k+1}} \right\} \leq \exp \left\{ - \frac{4k^2 2^k}{2^{k+1}} \right\} = e^{-2k^2}.
\]
Then \(p_0 \leq \binom{2k^2}{k^2} p_1 < \left(\frac{2}{e} \right)^{2k^2} \).