Edge coloring

Part 4.1
A (proper) \textit{k}-edge-coloring of a graph \(G\) is a mapping
\(f : E(G) \to \{1, \ldots, k\}\) such that

\[f^{-1}(i) \text{ is a matching for all } i \in \{1, \ldots, k\}.\] \hspace{1cm} (1)
A (proper) \(k \)-edge-coloring of a graph \(G \) is a mapping
\(f : E(G) \rightarrow \{1, \ldots, k\} \) such that

\[
f^{-1}(i) \text{ is a matching for all } i \in \{1, \ldots, k\}.
\]

(1)

Observations: 1. If \(G \) has a loop, then it has no \(k \)-edge-coloring
for any \(k \).
2. **Multiple edges** DO affect coloring.
3. For each \(v \in V(G) \), the colors of all incident edges are
distinct.
A (proper) k-edge-coloring of a graph G is a mapping $f : E(G) \rightarrow \{1, \ldots, k\}$ such that

$$f^{-1}(i) \text{ is a matching for all } i \in \{1, \ldots, k\}. \quad (1)$$

Observations:
1. If G has a loop, then it has no k-edge-coloring for any k.
2. **Multiple edges** DO affect coloring.
3. For each $v \in V(G)$, the colors of all incident edges are distinct.

We call $f^{-1}(i)$ a color class of f. By definition, a k-edge-coloring of a graph G is a partition of $E(G)$ into k matchings.
A (proper) k-edge-coloring of a graph G is a mapping $f : E(G) \to \{1, \ldots, k\}$ such that

$$f^{-1}(i) \text{ is a matching for all } i \in \{1, \ldots, k\}.$$ \hspace{1cm} (1)

Observations:

1. If G has a loop, then it has no k-edge-coloring for any k.
2. Multiple edges DO affect coloring.
3. For each $v \in V(G)$, the colors of all incident edges are distinct.

We call $f^{-1}(i)$ a color class of f. By definition, a k-edge-coloring of a graph G is a partition of $E(G)$ into k matchings.

The edge chromatic number, $\chi'(G)$, of a graph G is the minimum positive integer k s.t. G has a k-edge-coloring. Sometimes it is called the chromatic index of G.
\(G \) is \(k \)-edge-colorable if \(\chi'(G) \leq k \).

Observation: \(\chi'(G) \geq \Delta(G) \) for every \(G \).
G is k-edge-colorable if $\chi'(G) \leq k$.

Observation: $\chi'(G) \geq \Delta(G)$ for every G.

Question: Which graphs are 2-edge-colorable?
G is k-edge-colorable if $\chi'(G) \leq k$.

Observation: $\chi'(G) \geq \Delta(G)$ for every G.

Question: Which graphs are 2-edge-colorable?

Fact: For each $k \geq 3$, the problem to check whether a graph G with $\Delta(G) = k$ is k-colorable is NP-complete.
G is k-edge-colorable if $\chi'(G) \leq k$.

Observation: $\chi'(G) \geq \Delta(G)$ for every G.

Question: Which graphs are 2-edge-colorable?

Fact: For each $k \geq 3$, the problem to check whether a graph G with $\Delta(G) = k$ is k-colorable is NP-complete.

Line graphs

For a loopless G, the line graph $L(G)$ has $V(L(G)) = E(G)$ and two vertices e and e' of $L(G)$ are adjacent iff e and e' share a vertex in G.

By construction, $\chi'(G) = \chi(L(G))$ for every graph G.
Line graphs

For a loopless G, the line graph $L(G)$ has $V(L(G)) = E(G)$ and two vertices e and e' of $L(G)$ are adjacent iff e and e' share a vertex in G.

By construction, $\chi'(G) = \chi(L(G))$ for every graph G.
Line graphs

For a loopless G, the line graph $L(G)$ has $V(L(G)) = E(G)$ and two vertices e and e' of $L(G)$ are adjacent iff e and e' share a vertex in G.

By construction, $\chi'(G) = \chi(L(G))$ for every graph G.

Graph G

L(G)
It follows that $\chi'(G) \leq 2\Delta(G) - 2$ for every graph G. In particular, if $\Delta(G) = 3$, then $\chi'(G) \leq 4$.

Shannon's application and example. $\Delta(S_k) = k$ and $\chi'(S_k) = \lfloor \frac{3k}{2} \rfloor$.
It follows that $\chi'(G) \leq 2\Delta(G) - 2$ for every graph G. In particular, if $\Delta(G) = 3$, then $\chi'(G) \leq 4$.

Shannon’s application and example.

$\Delta(S_k) = k$ and $\chi'(S_k) = \left\lfloor \frac{3k}{2} \right\rfloor$.

Graph S_6
Theorem 4.1 (Shannon’s Theorem) Let $G = (V, E)$ be a loopless graph with maximum degree Δ. Then $\chi'(G) \leq 3\Delta/2$.
Theorem 4.1 (Shannon’s Theorem) Let $G = (V, E)$ be a loopless graph with maximum degree Δ. Then $\chi'(G) \leq 3\Delta/2$.

Proof. If $\Delta \leq 1$, then the statement is evident. Let $\Delta \geq 2$. We use induction on the number of edges in graphs with maximum degree at most Δ. The base is the set of graphs with at most $3\Delta/2$ edges.
Theorem 4.1 (Shannon’s Theorem) Let $G = (V, E)$ be a loopless graph with maximum degree Δ. Then $\chi'(G) \leq 3\Delta/2$.

Proof. If $\Delta \leq 1$, then the statement is evident. Let $\Delta \geq 2$. We use induction on the number of edges in graphs with maximum degree at most Δ. The base is the set of graphs with at most $3\Delta/2$ edges.

Assume the theorem holds for all graphs with maximum degree at most Δ and at most $m - 1$ edges. Let G have m edges. Fix an edge e_1 in G. Let v and u be the ends of e_1.
Theorem 4.1 (Shannon’s Theorem) Let $G = (V, E)$ be a loopless graph with maximum degree Δ. Then $\chi'(G) \leq 3\Delta/2$.

Proof. If $\Delta \leq 1$, then the statement is evident. Let $\Delta \geq 2$. We use induction on the number of edges in graphs with maximum degree at most Δ. The base is the set of graphs with at most $3\Delta/2$ edges.

Assume the theorem holds for all graphs with maximum degree at most Δ and at most $m-1$ edges. Let G have m edges. Fix an edge e_1 in G. Let v and u be the ends of e_1.

Let $G_1 = G - e_1$. By the minimality of G, graph G_1 has an edge coloring f with colors in $M = \{1, 2, \ldots, \lfloor 3\Delta/2 \rfloor \}$.

For every $x \in V(G)$, let $O_f(x)$ be the set of colors in M NOT used in f to color edges incident with v.
Clearly, $|O_f(x)| \geq \lfloor \Delta/2 \rfloor$ for every $x \in V(G)$. Moreover, since e_1 was deleted,

$$|O_f(v)| \geq \lfloor \Delta/2 \rfloor + 1, \quad |O_f(u)| \geq \lfloor \Delta/2 \rfloor + 1.$$ \hspace{1cm} (2)
Clearly, \(|O_f(x)| \geq \lfloor \Delta/2 \rfloor \) for every \(x \in V(G) \).
Moreover, since \(e_1 \) was deleted,

\[
|O_f(v)| \geq \lfloor \Delta/2 \rfloor + 1, \quad |O_f(u)| \geq \lfloor \Delta/2 \rfloor + 1.
\] (2)

The main observation is that every bicolored set of edges spans a set of vertex disjoint cycles and paths.

Claim 1: \(O_f(v) \cap O_f(u) = \emptyset \).

Proof of Claim 1. Otherwise color \(e_1 \) with any \(\alpha \in O_f(v) \cap O_f(u) \).
Claim 2: If $\alpha \in O_f(v)$ and $\beta \in O_f(u)$, then there is a v, u-path whose edges colored alternately with β and α.

Proof of Claim 2. Otherwise recolor the edges of the bicolored path of colors β and α starting at v.
Claim 2: If $\alpha \in O_f(v)$ and $\beta \in O_f(u)$, then there is a v, u-path whose edges colored alternately with β and α.

Proof of Claim 2. Otherwise recolor the edges of the bicolored path of colors β and α starting at v.

Fix some $\alpha \in O_f(v), \beta \in O_f(u)$. Let e_2 be the edge of color α incident with u, and w be the other end of e_2.

Claim 3: $O_f(w) \cap O_f(u) = \emptyset$.

Proof of Claim 3. If $\gamma \in O_f(w) \cap O_f(u)$, then recolor e_2 with γ, and color e_1 with α.
Claim 4: $O_f(w) \cap O_f(v) \neq \emptyset$.

Proof of Claim 4. By (2),

$$|O_f(w)| + |O_f(v)| + |O_f(u)| \geq \left\lfloor \frac{\Delta}{2} \right\rfloor + \left\lfloor \frac{\Delta}{2} \right\rfloor + 1 + \left\lfloor \frac{\Delta}{2} \right\rfloor + 1 > |M|.$$

On the other hand, by Claims 1 and 3,

$(O_f(v) \cup O_f(w)) \cap O_f(u) = \emptyset$. This proves the claim.
Claim 4: $O_f(w) \cap O_f(v) \neq \emptyset$.

Proof of Claim 4. By (2),

$$|O_f(w)| + |O_f(v)| + |O_f(u)| \geq \left\lfloor \frac{\Delta}{2} \right\rfloor + \left\lfloor \frac{\Delta}{2} \right\rfloor + 1 + \left\lfloor \frac{\Delta}{2} \right\rfloor + 1 > |M|.$$

On the other hand, by Claims 1 and 3,

$$(O_f(v) \cup O_f(w)) \cap O_f(u) = \emptyset.$$

This proves the claim.

Let $\gamma \in O_f(w) \cap O_f(v)$. By Claim 2 (with γ in place of α), there is a v, u-path P whose edges colored alternately with β and γ. This path cannot go through w since $\gamma \in O_f(w)$. Therefore, recoloring the edges of P, we come to a contradiction with Claim 3 (now $\gamma \in O(u) \cap O(w)$).
Let $\mu(G)$ denote the maximum multiplicity of an edge in G.

Theorem 4.2 (Vizing, 1963) Let $G = (V, E)$ be a multigraph with maximum degree Δ. Then $\chi'(G) \leq \Delta + \mu(G)$.

Moreover, the proof yields a polynomial time algorithm of edge coloring of G with $\Delta(G) + \mu(G)$ colors. But the problem of edge coloring of G with $\Delta(G)$ colors is NP-complete.
Let $\mu(G)$ denote the maximum multiplicity of an edge in G.

Theorem 4.2 (Vizing, 1963) Let $G = (V, E)$ be a multigraph with maximum degree Δ. Then $\chi'(G) \leq \Delta + \mu(G)$.

Moreover, the proof yields a polynomial time algorithm of edge coloring of G with $\Delta(G) + \mu(G)$ colors. But the problem of edge coloring of G with $\Delta(G)$ colors is **NP-complete**.

We present a proof of the following partial case of Theorem 4.2 (see the general proof in the book).

Theorem 4.2’ (Vizing, 1963) Let $G = (V, E)$ be a simple graph with maximum degree Δ and let $e_0 = xy \in E(G)$. If $G - e_0$ has an edge-$(\Delta + 1)$-coloring ϕ, then G also has an edge-$(\Delta + 1)$-coloring.
Suppose G has no edge-$(\Delta + 1)$-coloring. Construct the auxiliary digraph H as follows: $V(H) = N_G(y)$ and $uv \in E(H)$ if $\phi(vy) \in O(u)$. Let X be the set of vertices reachable in H from x and H' be the subdigraph $H[X]$ of H induced by X.
Suppose G has no edge-$(\Delta + 1)$-coloring. Construct the auxiliary digraph H as follows: $V(H) = N_G(y)$ and $uv \in E(H)$ if $\phi(vy) \in O(u)$. Let X be the set of vertices reachable in H from x and H' be the subdigraph $H[X]$ of H induced by X.

By definition, $x \in X$. Since the outneighbors of a reachable from x vertex also are reachable from x,

$$N^+_H(v) \subseteq X \quad \text{for every } v \in X. \quad (3)$$
Suppose G has no edge-$(\Delta + 1)$-coloring. Construct the auxiliary digraph H as follows: $V(H) = N_G(y)$ and $uv \in E(H)$ if $\phi(vy) \in O(u)$. Let X be the set of vertices reachable in H from x and H' be the subdigraph $H[X]$ of H induced by X.

By definition, $x \in X$. Since the outneighbors of a reachable from x vertex also are reachable from x,

$$N^+_H(v) \subseteq X \quad \text{for every } v \in X. \quad (3)$$

Since G has no edge-$(\Delta + 1)$-coloring, $O(x) \cap O(y) = \emptyset$. Fix $\alpha \in O(y)$.
Suppose G has no edge-$(\Delta + 1)$-coloring. Construct the auxiliary digraph H as follows: $V(H) = N_G(y)$ and $uv \in E(H)$ if $\phi(vy) \in O(u)$. Let X be the set of vertices reachable in H from x and H' be the subdigraph $H[X]$ of H induced by X.

By definition, $x \in X$. Since the outneighbors of a reachable from x vertex also are reachable from x,

$$N_H^+(v) \subseteq X \quad \text{for every } v \in X. \quad (3)$$

Since G has no edge-$(\Delta + 1)$-coloring, $O(x) \cap O(y) = \emptyset$. Fix $\alpha \in O(y)$.

Claim 1: $\alpha \notin O(v)$ for every $v \in X$.

Proof: Suppose $\alpha \in O(v)$ and (x_0, x_1, \ldots, x_s) where $x_0 = x$ and $x_s = v$ is an x, v-path in H'. By the definition of edges in H', for each $i \in \{1, \ldots, s\}$, $\phi(yx_i) \in O(x_{i-1})$.
Rencolor e_s with α and for every $i = 1, \ldots, s$, (re)color e_{i-1} with $\phi(e_i)$. This yields a coloring of G. \qed
Recolor e_s with α and for every $i = 1, \ldots, s$, (re)color e_{i-1} with $\phi(e_i)$. This yields a coloring of G. □

Claim 1 yields that for every $v \in X$ and $\beta \in O(v)$, there is some $w \in N(y)$ with $\phi(wy) = \beta$. Then by the definition of H, $vw \in E(H')$. So by (3),

$$d^+_{H'}(v) \geq \Delta + 1 - d(v) \ \forall v \in X; \ d^+_{H'}(x) \geq \Delta + 1 - d(x) + 1. \ (4)$$
Recolor e_s with α and for every $i = 1, \ldots, s$, (re)color e_{i-1} with $\phi(e_i)$. This yields a coloring of G. \hfill \Box

Claim 1 yields that for every $v \in X$ and $\beta \in O(v)$, there is some $w \in N(y)$ with $\phi(wy) = \beta$. Then by the definition of H, $vw \in E(H')$. So by (3),

$$d_{H'}^+(v) \geq \Delta + 1 - d(v) \ \forall v \in X; \ d_{H'}^+(x) \geq \Delta + 1 - d(x) + 1. \quad (4)$$

A $[\beta, \gamma]$-path in G is a path whose edges are alternately colored with β and γ. A $[\beta, \gamma](a, b)$-path is a $[\beta, \gamma]$-path from a to b in G.

Claim 2: If $v \in X$ and $\beta \in O(v)$, then G contains an $[\alpha, \beta](v, y)$-path.

Proof: If the claim is not true, choose a vertex $v \in X$ at minimum distance from x in H' for which there is $\beta \in O(v)$ such that the $[\alpha, \beta]$-path P starting at v does not end at y. Let z denote the other end of P.
Let \((x_0, x_1, \ldots, x_s)\) where \(x_0 = x\) and \(x_s = v\) be a shortest \(x, v\)-path in \(H'\). By definition, for each \(i \in \{1, \ldots, s\}\),
\[\phi(yx_i) \in O(x_{i-1}).\]
Let \((x_0, x_1, \ldots, x_s)\) where \(x_0 = x\) and \(x_s = v\) be a shortest \(x, v\)-path in \(H'\). By definition, for each \(i \in \{1, \ldots, s\}\),
\[\phi(yx_i) \in O(x_{i-1}).\]

If \(z \in X\), then by Claim 1 the last edge of \(P\) has color \(\alpha\), and \(\beta \in O(z)\). So by the minimality of the distance of \(v\) from \(x\),
\(z \not\in \{x_0, \ldots, x_s\}\).

Then we can switch the colors \(\alpha\) and \(\beta\) on the edges of \(P\), recolor \(e_s\) with \(\alpha\) and for every \(i = 1, \ldots, s\) (as in the proof of Claim 1), (re)color \(yx_{i-1}\) with \(\phi(yx_i)\).
Let \((x_0, x_1, \ldots, x_s)\) where \(x_0 = x\) and \(x_s = v\) be a shortest \(x, v\)-path in \(H'\). By definition, for each \(i \in \{1, \ldots, s\}\),
\(\phi(yx_i) \in O(x_{i-1})\).

If \(z \in X\), then by Claim 1 the last edge of \(P\) has color \(\alpha\), and \(\beta \in O(z)\). So by the minimality of the distance of \(v\) from \(x\), \(z \notin \{x_0, \ldots, x_s\}\).

Then we can switch the colors \(\alpha\) and \(\beta\) on the edges of \(P\), recolor \(e_s\) with \(\alpha\) and for every \(i = 1, \ldots, s\) (as in the proof of Claim 1), (re)color \(yx_{i-1}\) with \(\phi(yx_i)\).

Claim 3: For all distinct \(v, w \in X\), \(O(v) \cap O(w) = \emptyset\).

Proof: If \(v, w \in X\) and \(\beta \in O(v) \cap O(w)\), then by Claim 2, the \([\beta, \alpha]\)-path starting at \(y\) must end at both \(v\) and \(w\), an impossibility.
Claim 3 yields that

\[d_{H'}(v) \leq 1 \text{ for every } v \in X, \text{ and } d_{H'}(x) = 0. \] (5)

Since \(\sum_{v \in X} d_{H'}(v) = |E(H')| = \sum_{v \in X} d_{H'}^+(v) \), by (4) and (5),

\[0 = \sum_{v \in X} (d^+_{H'}(v) - d^-_{H'}(v)) \geq 2 + \sum_{v \in X} (D + 1 - d(v) - 1) \geq 2, \] (6)

a contradiction.
Claim 3 yields that

\[d_{H'}^-(v) \leq 1 \text{ for every } v \in X, \text{ and } d_{H'}^-(x) = 0. \] (5)

Since \(\sum_{v \in X} d_{H'}^-(v) = |E(H')| = \sum_{v \in X} d_{H'}^+(v) \), by (4) and (5),

\[0 = \sum_{v \in X} (d_{H'}^+(v) - d_{H'}^-(v)) \geq 2 + \sum_{v \in X} (D + 1 - d(v) - 1) \geq 2, \] (6)

a contradiction. \(\square \)

A graph \(G \) is critical, if \(\chi'(G) = \Delta(G) + 1 \) and \(\chi'(G - e) < \chi'(G) \) for every \(e \in E(G) \).

Theorem 4.3 (Vizing’s Adjacency Lemma, 1965) If \(G \) is a critical graph with maximum degree \(D \geq 2 \) and \(xy \in E(G) \), then \(y \) has at least \(\max \{2, D - d(x) + 1\} \) neighbors of degree \(D \).
By criticality, graph $G' = G - xy$ has an edge-D-coloring ϕ. Define $O(v)$, H, X and H' exactly as in the proof of Vizing’s Theorem. Again inequalities (3)–(5) and Claims 1–3 hold with proofs repeated word by word. Let $X' = \{ v \in X : d(v) = D \}$. Similarly to (6),

$$0 = \sum_{v \in X} (d^+_H(v) - d^-_{H'}(v)) \geq 2 + \sum_{v \in X} (D - 1 - d(v)). \quad (7)$$

A term $D - 1 - d(v)$ in the last sum is negative (and equals -1) iff $v \in X'$. Thus (7) yields $|X'| \geq 2$. Moreover, if $d(x) < D$ then by (7), $0 \geq 2 + (D - 1 - d(x)) - |X'|$, i.e. $|X'| \geq D - d(x) + 1$, as required.