Coloring

Part 3.3
The strong degree of a vertex \(v \) in a hypergraph \(G \) is the maximum number of edges \(e_1, \ldots, e_k \) containing \(v \) such that \(e_i \cap e_j = \{v\} \) for all \(i \neq j \).
The strong degree of a vertex v in a hypergraph G is the maximum number of edges e_1, \ldots, e_k containing v such that $e_i \cap e_j = \{v\}$ for all $i \neq j$.

For example, the degree of each vertex in K^r_n is $\left(\begin{array}{c} n-1 \\ r-1 \end{array}\right)$ and strong degree is only $\left\lfloor \frac{n-1}{r-1} \right\rfloor$.

Theorem 3.17 (Lovász): If the maximum strong degree of a hypergraph G is k, then $\chi(G) \leq k + 1$.

Proof. Suppose $\chi(G) \geq k + 2$. We may assume that after deleting any vertex, the chromatic number is at most $k + 1$.

Fix $v \in V(G)$ and consider $G' = G - v$. By the assumption, G' has a $(k + 1)$-coloring f with colors $1, \ldots, k + 1$. We try to color v with each color and must fail in all cases. Then for each $i \in [k + 1]$, there is an edge e_i such that $f(w) = i$ for all $w \in e_i - v$. Then all sets $e_i - v$ are disjoint, and the strong degree of v is at least $k + 1$.

The strong degree of a vertex v in a hypergraph G is the maximum number of edges e_1, \ldots, e_k containing v such that $e_i \cap e_j = \{v\}$ for all $i \neq j$.

For example, the degree of each vertex in K_r^r is $\binom{n-1}{r-1}$ and strong degree is only $\lceil \frac{n-1}{r-1} \rceil$.

Theorem 3.17 (Lovász): If the maximum strong degree of a hypergraph G is k, then $\chi(G) \leq k + 1$.

Proof. Suppose $\chi(G) \geq k + 2$. We may assume that after deleting any vertex, the chromatic number is at most $k + 1$.
The strong degree of a vertex \(v \) in a hypergraph \(G \) is the maximum number of edges \(e_1, \ldots, e_k \) containing \(v \) such that \(e_i \cap e_j = \{ v \} \) for all \(i \neq j \).

For example, the degree of each vertex in \(K_r^n \) is \(\binom{n-1}{r-1} \) and strong degree is only \(\lfloor \frac{n-1}{r-1} \rfloor \).

Theorem 3.17 (Lovász): If the maximum strong degree of a hypergraph \(G \) is \(k \), then \(\chi(G) \leq k + 1 \).

Proof. Suppose \(\chi(G) \geq k + 2 \). We may assume that after deleting any vertex, the chromatic number is at most \(k + 1 \).

Fix \(v \in V(G) \) and consider \(G' = G - v \). By the assumption, \(G' \) has a \((k + 1) \)-coloring \(f \) with colors \(1, \ldots, k + 1 \). We try to color \(v \) with each color and must fail in all cases. Then for each \(i \in [k + 1] \), there is an edge \(e_i \) such that \(f(w) = i \) for all \(w \in e_i - v \). Then all sets \(e_i - v \) are disjoint, and the strong degree of \(v \) is at least \(k + 1 \). \(\square \)
Recall:
Theorem 3.15 (Lovász, 1966 (born 1948)): Let G be a graph. If D_1, \ldots, D_t are nonnegative integers such that

$$\sum_{i=1}^{t} (D_i + 1) \geq \Delta(G) + 1,$$

then there is a partition (V_1, \ldots, V_t) of $V(G)$ s.t.

$$\Delta(G[V_i]) \leq D_i \quad \forall i \in [t].$$
Recall:
Theorem 3.15 (Lovász, 1966 (born 1948)): Let G be a graph. If D_1, \ldots, D_t are nonnegative integers such that
\[
\sum_{i=1}^{t} (D_i + 1) \geq \Delta(G) + 1,
\]
then there is a partition (V_1, \ldots, V_t) of $V(G)$ s.t.
\[
\Delta(G[V_i]) \leq D_i \quad \forall i \in [t].
\]

Conjecture (Correa, Havet and Sereni, 2009): There exists an integer $k_0 \geq 3$ such that for each $k \geq k_0$, the vertex set of every planar graph G with maximum degree at most $2k + 2$ can be partitioned into subsets V_1 and V_2 such that $\Delta(G[V_i]) \leq k$ for $i = 1, 2$.
Theorem 3.18 (Catlin): Let $D \geq 4$. If G has no 4-cycles and $\Delta(G) \leq D$, then $\chi(G) \leq 2 \left\lceil \frac{D+2}{3} \right\rceil$.

Proof. Let $t = \left\lceil \frac{D+2}{3} \right\rceil$. Let $\mathcal{P} = (V_1, \ldots, V_t)$ be a partition of $V(G)$ s. t.
(a) \mathcal{P} minimizes $\sum_{i=1}^{t} |E(G[V_i])|$; and
(b) modulo (a), \mathcal{P} minimizes the total number of cycles in $G[V_1] \cup \ldots \cup G[V_t]$.
Theorem 3.18 (Catlin): Let $D \geq 4$. If G has no 4-cycles and $\Delta(G) \leq D$, then $\chi(G) \leq 2 \left\lceil \frac{D+2}{3} \right\rceil$.

Proof. Let $t = \left\lceil \frac{D+2}{3} \right\rceil$. Let $P = (V_1, \ldots, V_t)$ be a partition of $V(G)$ s. t. (a) P minimizes $\sum_{i=1}^{t} |E(G[V_i])|$; and (b) modulo (a), P minimizes the total number of cycles in $G[V_1] \cup \ldots \cup G[V_t]$.

First we claim:

For each $P = (V_1, \ldots, V_t)$ satisfying (a),

\[\Delta(G[V_i]) \leq 2 \text{ for every } i \in \{1, \ldots, t\}. \tag{2} \]

Indeed, suppose $d_{G[V_1]}(v) \geq 3$ for some $v \in V_1$. Since $3t \geq D + 2$, there is some j such that $e(v, V_j) \leq 2$. Let $P' = (V'_1, \ldots, V'_t)$ be obtained from P by moving v from V_1 to V_j. Then
\[
\sum_{i=1}^{t} |E(G[V_i'])| \leq \sum_{i=1}^{t} |E(G[V_i])| - 3 + 2 < \sum_{i=1}^{t} |E(G[V_i])|,
\]

contradicting (a). This proves (2).
\[
\sum_{i=1}^{t} |E(G[V_i'])| \leq \sum_{i=1}^{t} |E(G[V_i])| - 3 + 2 < \sum_{i=1}^{t} |E(G[V_i])|,
\]
contradicting (a). This proves (2).

If none of \(G[V_i] \)'s has a cycle, then each of them is 2-colorable; so \(\chi(G) \leq \sum_{i=1}^{t} \chi(G[V_i]) \leq 2t \), as claimed.

Suppose that \(G[V_{i_1}] \) has a cycle \(C_1 \). Rename \(\mathcal{P} \) as \(\mathcal{P}_0 = (V_{0,1}, \ldots, V_{0,t}) \). Let \(v_1 \in C_1 \) and \(x_1 \) and \(y_1 \) be the neighbors of \(v_1 \) in \(C_1 \). Since \(2 + 3(t-1) = 3t - 1 \geq D + 1 \), there is \(i_2 \neq i_1 \) such that \(e(v_1, V_{0, i_2}) \leq 2 \).
\[\sum_{i=1}^{t} |E(G[V_i])| \leq \sum_{i=1}^{t} |E(G[V_i])| - 3 + 2 < \sum_{i=1}^{t} |E(G[V_i])|, \]

contradicting (a). This proves (2).

If none of \(G[V_i] \)s has a cycle, then each of them is 2-colorable; so \(\chi(G) \leq \sum_{i=1}^{t} \chi(G[V_i]) \leq 2t \), as claimed.

Suppose that \(G[V_{i_1}] \) has a cycle \(C_1 \). Rename \(\mathcal{P} \) as \(\mathcal{P}_0 = (V_{0,1}, \ldots, V_{0,t}) \). Let \(v_1 \in C_1 \) and \(x_1 \) and \(y_1 \) be the neighbors of \(v_1 \) in \(C_1 \). Since \(2 + 3(t - 1) = 3t - 1 \geq D + 1 \), there is \(i_2 \neq i_1 \) such that \(e(v_1, V_{0,i_2}) \leq 2 \).

Let \(\mathcal{P}_1 = (V_{1,1}, \ldots, V_{1,t}) \) be obtained from \(\mathcal{P}_0 \) by moving \(v_1 \) from \(V_{0,i_1} \) to \(V_{0,i_2} \). Since

\[\sum_{i=1}^{t} |E(G[V_{1,i}])| \leq \sum_{i=1}^{t} |E(G[V_{0,i}])| - 2 + 2 = \sum_{i=1}^{t} |E(G[V_{0,i}])|, \]
by (2), $\Delta(G[V_{1,i}]) \leq 2$ for every $i \in \{1, \ldots, t\}$. Thus the component C_2 of V_{1,i_2} containing v_1 is either a cycle or a path, and

> the component $C_1 - v_1$ of $G[V_{1,i_1}]$ is an x_1, y_1-path. \hspace{1cm} (3)
by (2), $\Delta(G[V_1,i]) \leq 2$ for every $i \in \{1, \ldots, t\}$. Thus the component C_2 of V_{1,i_2} containing v_1 is either a cycle or a path, and

> the component $C_1 - v_1$ of $G[V_1,i_1]$ is an x_1, y_1-path. \(3\)

Moreover, by (b), C_2 is a cycle.

> Let $v_2 \in C_2 - v_1$ and x_2 and y_2 be the neighbors of v_2 in C_2 (possibly, $v_1 \in \{x_2, y_2\}$).

(4)

As above, there is $i_3 \neq i_2$ such that $e(v_2, V_{1,i_3}) \leq 2$ (possibly, $i_3 = i_1$).
by (2), $\Delta(G[V_1,i]) \leq 2$ for every $i \in \{1, \ldots, t\}$. Thus the component C_2 of V_{1,i_2} containing v_1 is either a cycle or a path, and

$$\text{the component } C_1 - v_1 \text{ of } G[V_1,i_1] \text{ is an } x_1, y_1\text{-path.} \quad (3)$$

Moreover, by (b), C_2 is a cycle.

$$\text{Let } v_2 \in C_2 - v_1 \text{ and } x_2 \text{ and } y_2 \text{ be the neighbors of } v_2 \text{ in } C_2 \text{ (possibly, } v_1 \in \{x_2, y_2\}). \quad (4)$$

As above, there is $i_3 \neq i_2$ such that $e(v_2, V_{1,i_3}) \leq 2$ (possibly, $i_3 = i_1$).

Let $\mathcal{P}_2 = (V_{2,1}, \ldots, V_{2,t})$ be obtained from \mathcal{P}_1 by moving v_2 from V_{1,i_2} to V_{1,i_3}. Continue this process until for some $h > j \geq 0$, vertex v_h is moved to $V_{h,i_{j+1}}$ and is adjacent to a vertex in $C_{j+1} - v_{j+1}$.
By (2) and (b), the component containing v_h in $G[V_{h,i+1}]$ is a cycle, and thus by (3) with $j + 1$ in place of 1, v_h must be adjacent to x_{j+1} and y_{j+1}. But then we have the 4-cycle $(v_h, x_{j+1}, v_{j+1}, y_{j+1})$, a contradiction. \qed
By (2) and (b), the component containing v_h in $G[V_{h,i+1}]$ is a cycle, and thus by (3) with $j+1$ in place of 1, v_h must be adjacent to x_{j+1} and y_{j+1}. But then we have the 4-cycle $(v_h, x_{j+1}, v_{j+1}, y_{j+1})$, a contradiction. □

Theorem 3.19 (A. K.): Let $D \geq 4$. If G has no 3-cycles and $\Delta(G) \leq D$, then $\chi(G) \leq 2 \left\lceil \frac{D+2}{3} \right\rceil$.

Proof. We repeat the proof of Theorem 3.18 until (4). In (4), since G is triangle-free, we may additionally demand that $v_2 v_1 \notin E(G)$, i.e., $v_1 \notin \{x_2, y_2\}$. Then we continue the proof until the last sentence, demanding for each j that $v_j \notin \{x_{j+1}, y_{j+1}\}$. Instead of the last sentence of the proof of Theorem 3.18, we argue as follows.
Since G is triangle-free, $v_h v_{j+1} \notin E(G)$. Let W be the set of neighbors of v_{j+1} in $V_{h,i_{j+1}} - \{x_{j+1}, y_{j+1}\}$. Since the only neighbors of v_{j+1} in $V_{j,i_{j+1}}$ were x_{j+1} and y_{j+1}, every vertex in W is of the form v_g for some $j + 2 \leq g \leq h - 1$. Hence each $w \in W$ has exactly 2 neighbors in $V_{h,i_{j+1}}$, and W is independent.
Since G is triangle-free, $v_h v_{j+1} \notin E(G)$. Let W be the set of neighbors of v_{j+1} in $V_{h,i_{j+1}} - \{x_{j+1}, y_{j+1}\}$. Since the only neighbors of v_{j+1} in $V_{j,i_{j+1}}$ were x_{j+1} and y_{j+1}, every vertex in W is of the form v_g for some $j+2 \leq g \leq h-1$. Hence each $w \in W$ has exactly 2 neighbors in $V_{h,i_{j+1}}$, and W is independent.

Therefore, for each $w \in W$ there is an $i(w) \neq i_{j+1}$ such that w has at most 2 neighbors in $V_{h,i(w)}$. Let partition $Q = (V'_1, \ldots, V'_t)$ be obtained from P_h by moving v_{j+1} into $V_{h,i_{j+1}}$ and each $w \in W$ into $V_{h,i(w)}$.
Since G is triangle-free, $v_h v_{j+1} \notin E(G)$. Let W be the set of neighbors of v_{j+1} in $V_{h,i_{j+1}} - \{x_{j+1}, y_{j+1}\}$. Since the only neighbors of v_{j+1} in $V_{j,i_{j+1}}$ were x_{j+1} and y_{j+1}, every vertex in W is of the form v_g for some $j + 2 \leq g \leq h - 1$. Hence each $w \in W$ has exactly 2 neighbors in $V_{h,i_{j+1}}$, and W is independent.

Therefore, for each $w \in W$ there is an $i(w) \neq i_{j+1}$ such that w has at most 2 neighbors in $V_{h,i(w)}$. Let partition $Q = (V'_1, \ldots, V'_t)$ be obtained from P_h by moving v_{j+1} into $V_{h,i_{j+1}}$ and each $w \in W$ into $V_{h,i(w)}$.

By the choice of $i(w)$ and the fact that W is independent, $\sum_{i=1}^t |E(G[V'_i])| \leq \sum_{i=1}^t |E(G[V_{h,i}])|$. But the graph $G[V'_{i_{j+1}}]$ has now vertices x_{j+1} and y_{j+1} of degree 3, a contradiction to (2). \qed
Better bounds

Theorem 3.20 (Johansson, 1996) If G is a triangle-free graph with $\Delta(G) \leq D$, then

$$\chi(G) \leq \frac{9D + o(D)}{\ln D}.$$
Better bounds

Theorem 3.20 (Johansson, 1996) If G is a triangle-free graph with $\Delta(G) \leq D$, then

$$\chi(G) \leq \frac{9D + o(D)}{\ln D}.$$

1. Kim, Molloy, Bernshteyn.
Better bounds

Theorem 3.20 (Johansson, 1996) If G is a triangle-free graph with $\Delta(G) \leq D$, then

$$\chi(G) \leq \frac{9D + o(D)}{\ln D}.$$

1. Kim, Molloy, Bernshteyn.

2. It is known that for each g and each D there are graphs $G(g, D)$ with maximum degree D, girth g and chromatic number at least $\frac{D}{2\ln D}$.
Better bounds

Theorem 3.20 (Johansson, 1996) If \(G \) is a triangle-free graph with \(\Delta(G) \leq D \), then

\[
\chi(G) \leq \frac{9D + o(D)}{\ln D}.
\]

1. Kim, Molloy, Bernshteyn.

2. It is known that for each \(g \) and each \(D \) there are graphs \(G(g, D) \) with maximum degree \(D \), girth \(g \) and chromatic number at least \(\frac{D}{2\ln D} \).

3. Discussion of small \(D \). Unsolved problems.