Coloring

Part 3.1
Definitions

A (proper) k-coloring of the vertices of a graph G is a mapping $f : V(G) \to \{1, \ldots, k\}$ such that

$$f(x) \neq f(y) \quad \forall \ e \in E(G) \text{ with ends } x \text{ and } y. \quad (1)$$
Definitions

A (proper) k-coloring of the vertices of a graph G is a mapping $f : V(G) \rightarrow \{1, \ldots, k\}$ such that

$$f(x) \neq f(y) \quad \forall \ e \in E(G) \text{ with ends } x \text{ and } y.$$ \ (1)

Observations: 1. If G has a loop, then it has no k-coloring for any k.
2. Multiple edges do not affect coloring. So below we consider colorings only simple graphs.
Observation: Given a k-coloring f of the vertices of a graph G, for each $i \in \{1, \ldots, k\}$, $f^{-1}(i)$ is an independent set. We call $f^{-1}(i)$ a color class of f. So, a k-coloring of the vertices of a graph G is a partition of $V(G)$ into k independent sets.
Observation: Given a k-coloring f of the vertices of a graph G, for each $i \in \{1, \ldots, k\}$, $f^{-1}(i)$ is an independent set. We call $f^{-1}(i)$ a color class of f. So, a k-coloring of the vertices of a graph G is a partition of $V(G)$ into k independent sets.

The larger is k, the more freedom we have. We always can color the vertices of an n-vertex graphs with n colors. The chromatic number, $\chi(G)$, of a graph G is the minimum positive integer k s.t. G has a k-coloring.

G is k-colorable if $\chi(G) \leq k$.
Observation: Given a k-coloring f of the vertices of a graph G, for each $i \in \{1, \ldots, k\}$, $f^{-1}(i)$ is an independent set. We call $f^{-1}(i)$ a color class of f.
So, a k-coloring of the vertices of a graph G is a partition of $V(G)$ into k independent sets.

The larger is k, the more freedom we have. We always can color the vertices of an n-vertex graphs with n colors. The chromatic number, $\chi(G)$, of a graph G is the minimum positive integer k s.t. G has a k-coloring.

G is k-colorable if $\chi(G) \leq k$.

Question: Which graphs are 2-colorable?
Observation: Given a k-coloring f of the vertices of a graph G, for each $i \in \{1, \ldots, k\}$, $f^{-1}(i)$ is an independent set. We call $f^{-1}(i)$ a color class of f.

So, a k-coloring of the vertices of a graph G is a partition of $V(G)$ into k independent sets.

The larger is k, the more freedom we have. We always can color the vertices of an n-vertex graphs with n colors.

The chromatic number, $\chi(G)$, of a graph G is the minimum positive integer k s.t. G has a k-coloring.

G is k-colorable if $\chi(G) \leq k$.

Question: Which graphs are 2-colorable?

Fact: For each $k \geq 3$, the problem to check whether a graph G is k-colorable is NP-complete.

The clique number, $\omega(G)$, is the size of a largest clique (complete subgraph) in G.

Proposition 3.1. For every graph G, $\chi(G) \geq \omega(G)$ and $\chi(G) \geq |V(G)|/\alpha(G)$.

Proof. All vertices in a clique of size $\omega(G)$ must have different colors. This proves $\chi(G) \geq \omega(G)$.

With any color, we can color at most $\alpha(G)$ vertices. This proves $\chi(G) \geq |V(G)|/\alpha(G)$.

The clique number, $\omega(G)$, is the size of a largest clique (complete subgraph) in G.

Proposition 3.1. For every graph G,

$$
\chi(G) \geq \omega(G) \quad \text{and} \quad \chi(G) \geq |V(G)|/\alpha(G).
$$

Proof. All vertices in a clique of size $\omega(G)$ must have different colors. This proves $\chi(G) \geq \omega(G)$.

With any color, we can color at most $\alpha(G)$ vertices. This proves $\chi(G) \geq |V(G)|/\alpha(G)$.

The **clique number**, \(\omega(G) \), is the size of a largest clique (complete subgraph) in \(G \).

Proposition 3.1. For every graph \(G \),

\[
\chi(G) \geq \omega(G) \quad \text{and} \quad \chi(G) \geq \frac{|V(G)|}{\alpha(G)}.
\] (2)

Proof. All vertices in a clique of size \(\omega(G) \) must have different colors. This proves \(\chi(G) \geq \omega(G) \).

With any color, we can color at most \(\alpha(G) \) vertices. This proves \(\chi(G) \geq \frac{|V(G)|}{\alpha(G)} \).

The **clique number**, $\omega(G)$, is the size of a largest clique (complete subgraph) in G.

Proposition 3.1. For every graph G,

$$\chi(G) \geq \omega(G) \quad \text{and} \quad \chi(G) \geq \frac{|V(G)|}{\alpha(G)}.$$ \hfill (2)

Proof. All vertices in a clique of size $\omega(G)$ must have different colors. This proves $\chi(G) \geq \omega(G)$.

The **clique number**, \(\omega(G) \), is the size of a largest clique (complete subgraph) in \(G \).

Proposition 3.1. For every graph \(G \),

\[
\chi(G) \geq \omega(G) \quad \text{and} \quad \chi(G) \geq \frac{|V(G)|}{\alpha(G)}.
\]

(2)

Proof. All vertices in a clique of size \(\omega(G) \) must have different colors. This proves \(\chi(G) \geq \omega(G) \).

With any color, we can color at most \(\alpha(G) \) vertices. This proves \(\chi(G) \geq |V(G)|/\alpha(G) \).
Greedy coloring

A greedy coloring of a graph G is defined as follows.
1. Order the vertices of G as, say v_1, \ldots, v_n.
Greedy coloring

A greedy coloring of a graph G is defined as follows.

1. Order the vertices of G as, say v_1, \ldots, v_n.

2. For $i = 1, 2, \ldots, n$ color v_i with the smallest positive integer distinct from the colors of the neighbors v_j of v_i with $j < i$.

Proposition 3.2. For every graph G, $\chi(G) \leq 1 + \Delta(G)$.

Proof. Apply greedy coloring to G. At every step, at most $\Delta(G)$ colors are forbidden for v_i. So, there always is a color in $\{1, \ldots, 1 + \Delta(G)\}$ available to color v_i.

On the other hand, on the next slide we will see an example of a tree T_4 with an ordering of its vertices s.t. the greedy coloring of T_4 w.r.t. this ordering needs 4 colors. It is clear how to generalize this to a tree that will need a 1000 colors for its greedy coloring.
Greedy coloring

A greedy coloring of a graph G is defined as follows.

1. Order the vertices of G as, say v_1, \ldots, v_n.

2. For $i = 1, 2, \ldots, n$ color v_i with the smallest positive integer distinct from the colors of the neighbors v_j of v_i with $j < i$.

Proposition 3.2. For every graph G, $\chi(G) \leq 1 + \Delta(G)$.

Greedy coloring

A greedy coloring of a graph G is defined as follows.
1. Order the vertices of G as, say v_1, \ldots, v_n.
2. For $i = 1, 2, \ldots, n$ color v_i with the smallest positive integer distinct from the colors of the neighbors v_j of v_i with $j < i$.

Proposition 3.2. For every graph G, $\chi(G) \leq 1 + \Delta(G)$.

Proof. Apply greedy coloring to G. At every Step i, at most $\Delta(G)$ colors are forbidden for v_i. So, there always is a color in $\{1, \ldots, 1 + \Delta(G)\}$ available to color v_i.
Greedy coloring

A greedy coloring of a graph G is defined as follows.

1. Order the vertices of G as, say v_1, \ldots, v_n.

2. For $i = 1, 2, \ldots, n$ color v_i with the smallest positive integer distinct from the colors of the neighbors v_j of v_i with $j < i$.

Proposition 3.2. For every graph G, $\chi(G) \leq 1 + \Delta(G)$.

Proof. Apply greedy coloring to G. At every Step i, at most $\Delta(G)$ colors are forbidden for v_i. So, there always is a color in $\{1, \ldots, 1 + \Delta(G)\}$ available to color v_i.

On the other hand, on the next slide we will see an example of a tree T_4 with an ordering of its vertices s.t. the greedy coloring of T_4 w.r.t. this ordering needs 4 colors. It is clear how to generalize this to a tree that will need a 1000 colors for its greedy coloring.
Definition A. A graph G is d-degenerate if for every subgraph H of G, $\delta(H) \leq d$.

Example 1: A graph G is 1-degenerate iff G is a forest.

Example 2: Every planar graph is 5-degenerate.

Definition B. A graph G is d-degenerate if its vertices can be ordered v_1, \ldots, v_n so that for each $1 < i \leq n$, vertex v_i has at most d neighbors in $\{v_1, \ldots, v_{i-1}\}$.

Proposition 3.3. Definitions (A) and (B) are equivalent.
Definition A. A graph G is d-degenerate if for every subgraph H of G, $\delta(H) \leq d$.

Example 1: A graph G is 1-degenerate iff G is a forest.
Definition A. A graph G is d-degenerate if for every subgraph H of G, $\delta(H) \leq d$.

Example 1: A graph G is 1-degenerate iff G is a forest.

Example 2: Every planar graph is 5-degenerate.
Definition A. A graph G is d-degenerate if for every subgraph H of G, $\delta(H) \leq d$.

Example 1: A graph G is 1-degenerate iff G is a forest.

Example 2: Every planar graph is 5-degenerate.

Definition B. A graph G is d-degenerate if its vertices can be ordered v_1, \ldots, v_n so that for each $1 < i \leq n$, vertex v_i has at most d neighbors in $\{v_1, \ldots, v_{i-1}\}$.
Definition A. A graph G is d-degenerate if for every subgraph H of G, $\delta(H) \leq d$.

Example 1: A graph G is 1-degenerate iff G is a forest.

Example 2: Every planar graph is 5-degenerate.

Definition B. A graph G is d-degenerate if its vertices can be ordered v_1, \ldots, v_n so that for each $1 < i \leq n$, vertex v_i has at most d neighbors in $\{v_1, \ldots, v_{i-1}\}$.

Proposition 3.3. Definitions (A) and (B) are equivalent.
Definition A. A graph G is d-degenerate if for every subgraph H of G, $\delta(H) \leq d$.

Example 1: A graph G is 1-degenerate iff G is a forest.

Example 2: Every planar graph is 5-degenerate.

Definition B. A graph G is d-degenerate if its vertices can be ordered v_1, \ldots, v_n so that for each $1 < i \leq n$, vertex v_i has at most d neighbors in $\{v_1, \ldots, v_{i-1}\}$.

Proposition 3.3. Definitions (A) and (B) are equivalent.

Proof: In class.

Proposition 3.4. Every d-degenerate graph is $(d + 1)$-colorable.

Proof: Use the ordering of vertices provided by Definition B, and apply to it the greedy coloring.
Orderings and coloring

Theorem 3.5 (Minty, 1962): Let G be a graph with a nonempty set C of cycles. For an orientation D of G, let

$$r(D) = \max_{C \in C} \left\lfloor \frac{a}{b} \right\rfloor,$$

where a and b are the number of edges of C oriented clockwise and counterclockwise, respectively. Then $\chi(G) = 1 + \min r(D)$, where the minimum is taken over all orientations D of G.
Orderings and coloring

Theorem 3.5 (Minty, 1962): Let G be a graph with a nonempty set C of cycles. For an orientation D of G, let

$$r(D) = \max_{C \in C} \left\lceil \frac{a}{b} \right\rceil,$$

where a and b are the number of edges of C oriented clockwise and counterclockwise, respectively. Then $\chi(G) = 1 + \min r(D)$, where the minimum is taken over all orientations D of G.

Proof. Part \geq. Let f be an optimal coloring with colors 1, \ldots, k. Construct D^*: Orient ab if $f(a) < f(b)$. Then each dipath in D^* has $\leq k - 1$ edges. So $r(D^*) \leq k - 1 = \chi(G) - 1$.

Proof. Part \leq. May assume G is connected. Also, it is enough to consider acyclic orientations. Let D be such an orientation.
Orderings and coloring

Theorem 3.5 (Minty, 1962): Let G be a graph with a nonempty set C of cycles. For an orientation D of G, let

$$r(D) = \max_{C \in C} \left\lceil \frac{a}{b} \right\rceil,$$

where a and b are the number of edges of C oriented clockwise and counterclockwise, respectively.

Then $\chi(G) = 1 + \min r(D)$, where the minimum is taken over all orientations D of G.

Proof. Part \geq. Let f be an optimal coloring with colors $1, \ldots, k$. Construct D^*: Orient ab if $f(a) < f(b)$. Then each dipath in D^* has $\leq k - 1$ edges. So $r(D^*) \leq k - 1 = \chi(G) - 1$.

Part \leq. May assume G is connected. Also, it is enough to consider acyclic orientations. Let D be such an orientation.
Fix $x \in V(G)$. For a walk W starting from x, let

$$g(W) = a - b \cdot r(D),$$

where a is the number of the edges in W oriented forward, and b – backward.

For $y \in V(G)$, let

$$g(y) = \max\{g(W) : W \text{ is an } x, y\text{-walk}\}.$$
Fix $x \in V(G)$. For a walk W starting from x, let

$$g(W) = a - b \cdot r(D),$$

where a is the number of the edges in W oriented forward, and b – backward.
For $y \in V(G)$, let

$$g(y) = \max \{g(W) : W \text{ is an } x, y\text{-walk}\}.$$

By definition, $g(W) \leq 0$ for each cycle W. Hence $g(y)$ is attained at some x, y-path. So, $g(y)$ is well defined.

If $uv \in E(D)$, then $g(v) \geq 1 + g(u)$ and $g(u) \geq g(v) - r(D)$.
Fix \(x \in V(G) \). For a walk \(W \) starting from \(x \), let

\[
g(W) = a - b \cdot r(D),
\]

where \(a \) is the number of the edges in \(W \) oriented forward, and \(b \) - backward.

For \(y \in V(G) \), let

\[
g(y) = \max\{g(W) : W \text{ is an } x, y\text{-walk}\}.
\]

By definition, \(g(W) \leq 0 \) for each cycle \(W \). Hence \(g(y) \) is attained at some \(x, y\)-path. So, \(g(y) \) is well defined.

If \(uv \in E(D) \), then \(g(v) \geq 1 + g(u) \) and \(g(u) \geq g(v) - r(D) \).

So we can color \(V(G) \) by congruence classes of \(g \) modulo \(1 + r(D) \).
Theorem 3.6 (Vitaver 1962, Hasse 1964/65, Roy 1967, Gallai 1968): If D is an orientation of G, then

$$\chi(G) \leq 1 + \ell(D),$$

(3)

where $\ell(D)$ is the length of a longest path in D. Moreover, there is D^* with equality in (3).
Theorem 3.6 (Vitaver 1962, Hasse 1964/65, Roy 1967, Gallai 1968): If D is an orientation of G, then

$$\chi(G) \leq 1 + \ell(D),$$

(3)

where $\ell(D)$ is the length of a longest path in D. Moreover, there is D^* with equality in (3).

Proof. Equality proved as Part \geq in Theorem 3.5.
Theorem 3.6 (Vitaver 1962, Hasse 1964/65, Roy 1967, Gallai 1968): If D is an orientation of G, then

$$\chi(G) \leq 1 + \ell(D),$$

(3)

where $\ell(D)$ is the length of a longest path in D. Moreover, there is D^* with equality in (3).

Proof. Equality proved as Part \geq in Theorem 3.5.

Let D be any orientation of G and $\ell = \ell(D)$. Let D' be an acyclic subgraph of D with the most edges. Let D'' be obtained from D by reversing all edges in $E(D) - E(D')$. Then

(a) D'' is acyclic and (b) $\ell(D'') \leq \ell(D)$.

(4)
Theorem 3.6 (Vitaver 1962, Hasse 1964/65, Roy 1967, Gallai 1968): If \(D \) is an orientation of \(G \), then

\[
\chi(G) \leq 1 + \ell(D),
\]

(3)

where \(\ell(D) \) is the length of a longest path in \(D \). Moreover, there is \(D^* \) with equality in (3).

Proof. Equality proved as Part \(\geq \) in Theorem 3.5.

Let \(D \) be any orientation of \(G \) and \(\ell = \ell(D) \). Let \(D' \) be an acyclic subgraph of \(D \) with the most edges. Let \(D'' \) be obtained from \(D \) by reversing all edges in \(E(D) - E(D') \). Then

(a) \(D'' \) is acyclic and (b) \(\ell(D'') \leq \ell(D) \).

(4)

Since \(D'' \) is acyclic, apply Theorem 3.5 to it.
Theorem 3.7 (Brooks, 1941): If $\Delta(G) = k$ and $\chi(G) > k$, then either G contains K_{k+1} or $k = 2$ and G contains an odd cycle.
Theorem 3.7 (Brooks, 1941): If $\Delta(G) = k$ and $\chi(G) > k$, then either G contains K_{k+1} or $k = 2$ and G contains an odd cycle.

Proof (Mel’nikov and Vizing):
Theorem 3.7 (Brooks, 1941): If $\Delta(G) = k$ and $\chi(G) > k$, then either G contains K_{k+1} or $k = 2$ and G contains an odd cycle.

Proof (Mel’nikov and Vizing): Case $k \leq 2$ is easy. Let $k \geq 3$ and G be a minimum counter-example. Let $v \in V(G)$, $G' = G - v$, f be a k-coloring of G, and V_1, \ldots, V_k be the color classes of f.
Theorem 3.7 (Brooks, 1941): If $\Delta(G) = k$ and $\chi(G) > k$, then either G contains K_{k+1} or $k = 2$ and G contains an odd cycle.

Proof (Mel’nikov and Vizing): Case $k \leq 2$ is easy. Let $k \geq 3$ and G be a minimum counter-example. Let $v \in V(G)$, $G' = G - v$, f be a k-coloring of G, and V_1, \ldots, V_k be the color classes of f.

Let $G_{i,j} = G'[V_i \cup V_j]$ and $G_{i,j}(x)$ denote the component of $G_{i,j}$ containing x.

Then v has exactly one neighbor, say x_i, in each V_i.

Claim 1: $\forall 1 \leq i < j \leq k$, $G_{i,j}(x_i) = G_{i,j}(x_j)$.

Claim 2: $\forall 1 \leq i < j \leq k$, $G_{i,j}(x_i)$ is an x_i, x_j-path.

Claim 3: For all distinct i, j, s, $G_{i,j}(x_i)$ and $G_{i,s}(x_i)$ share only x_i.
Finishing proof. Choose a k-coloring f of G' so that to maximize $G_{1,2}(x_1)$.

By Claim 2, it is an x_1, x_2-path, say $y_1 y_2 \ldots y_q$ where $y_1 = x_1$, $y_q = x_2$.
Finishing proof. Choose a k-coloring f of G' so that to maximize $G_{1,2}(x_1)$.

By Claim 2, it is an x_1, x_2-path, say $y_1 y_2 \ldots y_q$ where $y_1 = x_1$, $y_q = x_2$.

If $q = 2$, then $G = K_{k+1}$. So $q \geq 4$ and $y_{q-1} \neq x_1$.

Recolor $G_{2,3}(x_2)$ and call the new coloring f^*.
Finishing proof. Choose a k-coloring f of G' so that to maximize $G_{1,2}(x_1)$.

By Claim 2, it is an x_1, x_2-path, say $y_1 y_2 \ldots y_q$ where $y_1 = x_1$, $y_q = x_2$.

If $q = 2$, then $G = K_{k+1}$. So $q \geq 4$ and $y_{q-1} \neq x_1$.

Recolor $G_{2,3}(x_2)$ and call the new coloring f^*.

Consider $G_{1,2}^*$. By Claim 3, $G_{1,2}^* \supseteq G_{1,2} - x - 2$. By the maximality of $G_{1,2}(x_1)$, $y_{q-1} x_3 \in E(G)$. But then

$$y_{q-1} \in G_{1,3}(x_3) = G_{1,3}(x_1),$$

contradicting Claim 3. \qed
Corollary 3.8 of the proof (A.K. and Nakprasit): Suppose $\Delta(G) \leq k \geq 3$ and G does not contain K_{k+1}. If for some $v \in V(G)$ $G - v$ has a k-coloring f with color classes M_1, \ldots, M_k, then G has a k-coloring f' with color classes M'_1, \ldots, M'_k s.t. $|M'_i| = M_i$ for all $i \in [k]$ apart from one.

Proof. Essentially, repeats the proof of Th. 3.7. Different proof of Claim 1 (combined with Claim 2).
Corollary 3.8 of the proof (A.K. and Nakprasit): Suppose \(\Delta(G) \leq k \geq 3\) and \(G\) does not contain \(K_{k+1}\). If for some \(v \in V(G)\) \(G - v\) has a \(k\)-coloring \(f\) with color classes \(M_1, \ldots, M_k\), then \(G\) has a \(k\)-coloring \(f'\) with color classes \(M'_1, \ldots, M'_k\) s.t. \(|M'_i| = M_i\) for all \(i \in [k]\) apart from one.

Proof. Essentially, repeats the proof of Th. 3.7. Different proof of Claim 1 (combined with Claim 2).

Corollary 3.9: Suppose \(\Delta(G) \leq k \geq 3\) and \(G\) does not contain \(K_{k+1}\). If for some \(1 \leq s < k\) and a positive integer \(m\), \(G\) contains an \(s\)-colorable induced subgraph \(G'\) with \(m\) vertices, then \(G\) has a \(k\)-coloring in which the union of some \(s\) color classes is at least \(m\). In particular, \(G\) has a \(k\)-coloring in which a color class has \(\alpha(G)\) vertices.