Equitable colorings
of sparse graphs

Alexandr Kostochka

Dept of Mathematics, University of Illinois at Urbana-Champaign
and Institute of Mathematics, Novosibirsk

Based on joint work with H. Kierstead
Definition

An **equitable coloring** of a graph is a proper vertex coloring such that the sizes of every two color classes differ by at most 1.
Definition

An equitable coloring of a graph is a proper vertex coloring such that the sizes of every two color classes differ by at most 1.

Let $H(n, k)$ denote the n-vertex graph every of whose k components is either a $\left\lfloor \frac{n}{k} \right\rfloor$-clique or a $\left\lceil \frac{n}{k} \right\rceil$-clique.

An n-vertex graph G has an equitable k-coloring if and only if G packs with $H(n, k)$.
Definition

An equitable coloring of a graph is a proper vertex coloring such that the sizes of every two color classes differ by at most 1.

Let $H(n, k)$ denote the n-vertex graph every of whose k components is either a $\left\lfloor \frac{n}{k} \right\rfloor$-clique or a $\left\lceil \frac{n}{k} \right\rceil$-clique.

An n-vertex graph G has an equitable k-coloring \iff G packs with $H(n, k)$ \iff the complement, \overline{G} contains $H(n, k)$.
Applications

1. Scheduling, partitioning, and load balancing problems.

2. Deviation bounds for sums of random variables with limited dependence [Alon-Füredi, Janson-Ruciński, Pemmaraju].

A graph may have an equitable k-coloring but have no equitable $(k + 1)$-coloring.

An equitable 4-coloring of $K_{7,7}$.

Let $eq(G) = \min\{k : G \text{ has an equitable } m\text{-coloring for each } m \geq k\}$
To decide whether a graph has an equitable k-coloring is NP-complete even for $k = 3$.

This motivates extremal problems: if a graph G is sparse, then it has low $eq(G)$.

“Sparse” may mean “Low maximum degree”, or “Low average degree”, or “Low degeneracy”, or a combination of those, or something else.
Theorem 1. [Hajnal-Szemerédi] Every graph G has

$$eq(G) \leq \Delta(G) + 1.$$
Theorem 1. [Hajnal-Szemerédi] Every graph G has
\[eq(G) \leq \Delta(G) + 1. \]

Lo-o-o-ong proof.
Theorem 1. [Hajnal-Szemerédi] Every graph G has $eq(G) \leq \Delta(G) + 1$.

Conjecture 2. [Chen-Lih-Wu] Let G be a connected graph with maximum degree at most r. If G is distinct from K_{r+1}, $K_{r,r}$ (for odd r), and is not an odd cycle, then G has an equitable r-coloring.

The Chen-Lih-Wu Conjecture was proved: 1) For $r \leq 3$ [Chen-Lih-Wu], 2) For bipartite graphs [Lih-Wu], 3) For interval graphs [Chen-Lih-Yan], 4) For split graphs [Chen-Ko-Lih], 5) For outerplanar graphs [Yap-Zhang], 6) For planar graphs G with $\Delta(G) \geq 13$ [Yap-Zhang], 7) For planar graphs G with $\Delta(G) \geq 9$ [Nakprasit], 8) For graphs G with $\text{avdeg}(G) \leq \Delta(G)/5$ [Kostochka-Nakprasit]
Ore-type problems

Ore’s Theorem. Every n-vertex graph G with
\[d(x) + d(y) \leq n - 2 \]
for each edge xy packs with the n-cycle.
Ore-type problems

Ore’s Theorem. Every \(n \)-vertex graph \(G \) with
\[d(x) + d(y) \leq n - 2 \] for each edge \(xy \) packs with the \(n \)-cycle.

Let the total edge degree of \(G \) be
\[\theta(G') = \max\{d(x) + d(y) : xy \in E(G')\}. \]

\[\delta(G) + \Delta(G) \leq \theta(G) \leq 2\Delta(G). \]

\[\theta(G') = \Delta(L(G)) + 2. \]

\(\theta(G) \) equals the maximum degree of an edge of \(G \) in the total graph \(T(G) \).
Conjecture 3. [Kostochka-Yu] Every graph G with $\theta(G) \leq 2r$ has $eq(G) \leq r + 1$.

Note: We call it an Ore-type conjecture.
Conjecture 3. [Kostochka-Yu] Every graph G with $\theta(G) \leq 2r$ has $eq(G) \leq r + 1$.

Note: We call it an Ore-type conjecture.

Theorem 4. [K-K] Every graph G with $\theta(G) \leq 2r + 1$ has $eq(G) \leq r + 1$.

![Diagram](image)

$K_{m,2r-m}$ (odd m)
Conjecture 5. [K-K] If \(r \geq 3 \) and a connected graph \(G \) with \(\theta(G) \leq 2r \) differs from \(K_{r+1} \) and \(K_{m,2r-m} \) for all odd \(m \), then \(G \) has \(eq(G) \leq r \).

Theorem 6. [K-K] Conjecture 5 holds for \(r = 3 \).
Conjecture 5. [K-K] If $r \geq 3$ and a connected graph G with $\theta(G) \leq 2r$ differs from K_{r+1} and $K_{m,2r-m}$ for all odd m, then G has $eq(G) \leq r$.

For odd $r \geq 3$, the Chen-Lih-Wu Conjecture does not describe disconnected graphs with max.deg r that are not equitably r-colorable. For example, for an odd r, $K_{r,r} \cup K_{r,r}$ is equitably r-colorable, but $K_{r,r} \cup K_r$ is not.
A graph is r-equitable if is r-colorable and every its proper r-coloring is equitable.
A graph is r-equitable if is r-colorable and every its proper r-coloring is equitable.

Observation 1: If r is odd and G is the disjoint union of $K_{r,r}$ and an r-equitable graph, then G has no equitable r-coloring.
A graph is r-equitable if is r-colorable and every its proper r-coloring is equitable.

Observation 1: If r is odd and G is the disjoint union of $K_{r,r}$ and an r-equitable graph, then G has no equitable r-coloring.

Observation 2: If a spanning subgraph of G is the disjoint union of r-equitable graphs, then G is r-equitable.
A graph is \textit{r-equitable} if is \textit{r}-colorable and every its proper \textit{r}-coloring is equitable.

\textbf{Observation 1}: If \textit{r} is odd and \textit{G} is the disjoint union of \textit{K}_{r,r} and an \textit{r}-equitable graph, then \textit{G} has no equitable \textit{r}-coloring.

\textbf{Observation 2}: If a spanning subgraph of \textit{G} is the disjoint union of \textit{r}-equitable graphs, then \textit{G} is \textit{r}-equitable.

Clearly, a graph \textit{G} can be \textit{r}-equitable only for one \textit{r}. Call \textit{G} \textit{equitable} if it is \textit{r}-equitable for some \textit{r}.
Basic equitable graphs

F_1

F_2

F_3

F_4

F_5
More basic equitable graphs

F_6

F_7

F_8

F_9

F_{10}
Theorem [K-K] If \(r \geq 3 \) and a graph \(G \) with \(\theta(G) \leq 2r \) and \(|V(G)| \) divisible by \(r \) has an equitable \(r \)-coloring but has no nearly equitable \(r \)-coloring, then \(G \) is vertex-decomposable into \(r \)-basic graphs.

Conjecture 7. [K-K] If \(r \geq 3 \) is odd, then an \(r \)-colorable graph \(G \) with \(\Delta(G) \leq r \) does not have an equitable \(r \)-coloring if and only if a spanning subgraph of \(G \) is the disjoint union of \(K_{r,r} \) and basic \(r \)-equitable graphs.
Theorem [K-K] If $r \geq 3$ and a graph G with $\theta(G) \leq 2r$ and $|V(G)|$ divisible by r has an equitable r-coloring but has no nearly equitable r-coloring, then G is vertex-decomposable into r-basic graphs.

Conjecture 7. [K-K] If $r \geq 3$ is odd, then an r-colorable graph G with $\Delta(G) \leq r$ does not have an equitable r-coloring if and only if a spanning subgraph of G is the disjoint union of $K_{r,r}$ and basic r-equitable graphs.

Theorem 8. [K-K] For every odd $r \geq 3$, if the Chen-Lih-Wu Conjecture holds for graphs G with $\Delta(G) \leq r$, then Conjecture 7 holds for graphs G with $\Delta(G) \leq r$.
Theorem [K-K] If $r \geq 3$ and a graph G with $\theta(G) \leq 2r$ and $|V(G)|$ divisible by r has an equitable r-coloring but has no nearly equitable r-coloring, then G is vertex-decomposable into r-basic graphs.

Conjecture 7. [K-K] If $r \geq 3$ is odd, then an r-colorable graph G with $\Delta(G) \leq r$ does not have an equitable r-coloring if and only if a spanning subgraph of G is the disjoint union of $K_{r,r}$ and basic r-equitable graphs.

Theorem 8. [K-K] For every odd $r \geq 3$, if the Chen-Lih-Wu Conjecture holds for graphs G with $\Delta(G) \leq r$, then Conjecture 7 holds for graphs G with $\Delta(G) \leq r$.

Conjecture 10. [K-K] If $r \geq 3$, then an r-colorable graph G with $\theta(G) \leq 2r$ does not have an equitable r-coloring if and only if a spanning subgraph of G is the disjoint union of $K_{m,2r-m}$ for some odd m and basic r-equitable graphs.
Conjecture 10. [K-K] If $r \geq 3$, then an r-colorable graph G with $\theta(G) \leq 2r$ does not have an equitable r-coloring if and only if a spanning subgraph of G is the disjoint union of $K_{m, 2r-m}$ for some odd m and basic r-equitable graphs.

Theorem 11. [K-K] For every $r \geq 3$, if Conjecture 5 holds for graphs G with $\theta(G) \leq r$, then Conjecture 10 holds for graphs G with $\theta(G) \leq r$.

Corollary 12. [K-K] Conjecture 10 holds for $r = 3$.