Recent results on disjoint and longest cycles in graphs

Alexandr Kostochka

University of Illinois, Urbana, USA and Sobolev Institute of Mathematics, Novosibirsk, Russia

joint work with Z. Füredi, H. Kierstead, R. Luo, A. McConvey and J. Verstraëte

Turku, May, 2017
Corrádi–Hajnal Theorem

It was a conjecture by Erdős:

Theorem 1 [Corrádi and Hajnal, 1963, first version 1961]: Let $k \geq 1$, $n \geq 3k$ and let H be an n-vertex graph with $\delta(H) \geq 2k$. Then H contains k vertex-disjoint cycles.

Remark: In fact, they showed that one can have the length of each of the k cycles be at most $\lceil n/k \rceil$.

Corollary 2 [Corrádi and Hajnal]: Let $n = 3k$ and H be an n-vertex graph with $\delta(H) \geq 2k$. Then H contains k vertex-disjoint triangles.

Both restrictions are sharp.
Examples

$k=3$

Figure: Graphs with mindegree 5 with no 3 disjoint cycles.
Refinements

\[\Theta(G) = \min_{xy \notin E(G)} d(x) + d(y). \]

Theorem 3 [Enomoto 1998, Wang 1999]: Let \(k \geq 1, n \geq 3k \) and let \(H \) be an \(n \)-vertex graph with \(\Theta(H) \geq 4k - 1 \). Then \(H \) contains \(k \) vertex-disjoint cycles.

Theorem 4 [Aigner and Brandt 1993, Alon and Fisher 1996]: Let \(n \geq 3 \) and \(H \) be an \(n \)-vertex graph with \(\delta(H) \geq 2n/3 \). Then \(H \) contains each 2-factor.

Theorem 5 [Fan and Kierstead 1996]: Let \(n \geq 3 \) and \(H \) be an \(n \)-vertex graph with \(\delta(H) \geq 2n/3 - 1 \). Then \(H \) contains the square of the \(n \)-vertex path.
Refinements

\[\Theta(G) = \min_{xy \notin E(G)} d(x) + d(y). \]

Theorem 3 [Enomoto 1998, Wang 1999]: Let \(k \geq 1, n \geq 3k \) and let \(H \) be an \(n \)-vertex graph with \(\Theta(H) \geq 4k - 1 \). Then \(H \) contains \(k \) vertex-disjoint cycles.

Theorem 4 [Aigner and Brandt 1993, Alon and Fisher 1996]: Let \(n \geq 3 \) and \(H \) be an \(n \)-vertex graph with \(\delta(H) \geq 2n/3 \). Then \(H \) contains each 2-factor.

Theorem 5 [Fan and Kierstead 1996]: Let \(n \geq 3 \) and \(H \) be an \(n \)-vertex graph with \(\delta(H) \geq \frac{2n-1}{3} \). Then \(H \) contains the square of the \(n \)-vertex path.

Theorem 6 [A.K. and Yu]: Let \(n \geq 3 \) and \(H \) be an \(n \)-vertex graph with \(\Theta(H) \geq \frac{4n}{3} - 1 \). Then \(H \) contains each 2-factor.
Hajnal-Szemerédi Theorem

This also was a conjecture by Erdős:

Theorem 7 [Hajnal and Szemerédi 1970]: If $n = sk$ and for an n-vertex G, $\delta(G) \geq (s - 1)k$, then G contains k disjoint K_s.

Theorem 8 [Kierstead and A.K. 2008]: If $n = sk$ and for an n-vertex G, $\Theta(G) \geq 2(s - 1)k - 1$, then G contains k disjoint K_s.
Dirac’s question

In 1963 Dirac described all 3-connected multigraphs that do not have two disjoint cycles.

Also in 1963 Lovász described all multigraphs that do not have two disjoint cycles

Dirac asked:
Question 1 [Dirac 1963]: Which \((2k - 1)\)-connected multigraphs do not have \(k\) disjoint cycles?
Dirac-Erdős Theorems

Theorem 9 [Dirac and Erdős, 1963]: For $k \geq 3$, every graph in which the number $|V_{\geq 2k}|$ of the vertices with degree at least $2k$ exceeds the number $|V_{\leq 2k-2}|$ of the vertices with degree at most $2k - 2$ by at least $k^2 + 2k - 4$ contains k disjoint cycles.

Theorem 10 [Dirac and Erdős, 1963]: For $k \geq 3$, every planar graph in which the number $|V_{\geq 2k}|$ of the vertices with degree at least $2k$ exceeds the number $|V_{\leq 2k-2}|$ of the vertices with degree at most $2k - 2$ by at least $5k - 7$ contains k disjoint cycles.

These theorems were inspired by the Corrádi-Hajnal Theorem, but appeared in print earlier.
Figure: A graph with no k disjoint cycles and $|V_{\geq 2k}| - |V_{\leq 2k-2}| = 2k - 1$.
Theorem 11 [Kierstead, A.K., and McConvey]: Let $k \geq 2$ be an integer and G be a graph such that $|G| \geq 3k$. Let t be the maximum number of disjoint triangles contained in G. If

$$|V_{\geq 2k}| - |V_{\leq 2k-2}| \geq 2k + t,$$

then G contains k disjoint cycles.

Figure: A graph with no k disjoint cycles and $|V_{\geq 2k}| - |V_{\leq 2k-2}| = 3k - 2.$
Theorem 12 [Kierstead, A.K., and McConvey]: Let $k \geq 2$ be an integer and G be a planar graph such that $|G| \geq 3k$. If

$$|V_{\geq 2k}| - |V_{\leq 2k-2}| \geq 2k,$$

then G contains k disjoint cycles.

Figure: A $4k$-vertex graph with no k disjoint cycles and $|V_{\geq 2k}| - |V_{\leq 2k-2}| = 2k$.
Theorem 13 [Kierstead, A.K., and McConvey]: Let $k \geq 2$ be an integer and G be a graph with $|G| \geq 19k$. If

$$|V_{\geq 2k}| - |V_{\leq 2k-2}| \geq 2k,$$

then G contains k disjoint cycles.

Figure: A $4k$-vertex graph with no k disjoint cycles and $|V_{\geq 2k}| - |V_{\leq 2k-2}| = 2k$.
Theorem 13 [Kierstead, A.K., and McConvey]: Let \(k \geq 2 \) be an integer and \(G \) be a graph with \(|G| \geq 19k \). If

\[
|V_{\geq 2k}| - |V_{\leq 2k-2}| \geq 2k,
\]

then \(G \) contains \(k \) disjoint cycles.

Figure: A \(4k \)-vertex graph with no \(k \) disjoint cycles and \(|V_{\geq 2k}| - |V_{\leq 2k-2}| = 2k \).

Question: Is it true that for each \(n \geq 4k + 1 \) every graph with

\[
|V_{\geq 2k}| - |V_{\leq 2k-2}| \geq 2k
\]

has \(k \) disjoint cycles?
Erdős–Gallai Theorems

Theorem 14 [Erdős and Gallai, 1959]: Let \(n \geq k \geq 2 \) and \(G \) be an \(n \)-vertex graph with more than \(\frac{1}{2} (k - 2)n \) edges. Then \(G \) contains a \(k \)-vertex path \(P_k \).

Theorem 15 [Erdős and Gallai, 1959]: Let \(n' \geq k' \geq 3 \) and \(G \) be an \(n' \)-vertex graph with more than \(\frac{1}{2} (k' - 1)(n' - 1) \) edges. Then \(G \) contains a cycle of length at least \(k \).
Erdős–Gallai Theorems

Theorem 14 [Erdős and Gallai, 1959]: Let $n \geq k \geq 2$ and G be an n-vertex graph with more than $\frac{1}{2}(k - 2)n$ edges. Then G contains a k-vertex path P_k.

Theorem 15 [Erdős and Gallai, 1959]: Let $n' \geq k' \geq 3$ and G be an n'-vertex graph with more than $\frac{1}{2}(k' - 1)(n' - 1)$ edges. Then G contains a cycle of length at least k.

Theorem 14 follows from Theorem 15 for $n' = n + 1$ and $k' = k + 1$. Indeed, if an n-vertex graph G with $e(G) > \frac{1}{2}(k - 2)n$ has no k-vertex path, consider G' obtained from G by adding a new vertex v adjacent to all vertices of G. Then G' has $n' = n + 1$ vertices, $e(G') = n + e(G) > \frac{1}{2}kn = \frac{1}{2}(k' - 1)(n' - 1)$, but G' has no cycle with at least k' vertices, a contradiction to Theorem 15.
Erdős–Gallai Theorems, II

Theorem 14 [Erdős and Gallai, 1959]: Let \(n \geq k \geq 2 \) and \(G \) be an \(n \)-vertex graph with more than \(\frac{1}{2}(k - 2)n \) edges. Then \(G \) contains a \(k \)-vertex path \(P_k \).

Theorem 15 [Erdős and Gallai, 1959]: Let \(n' \geq k' \geq 3 \) and \(G \) be an \(n' \)-vertex graph with more than \(\frac{1}{2}(k' - 1)(n' - 1) \) edges. Then \(G \) contains a cycle of length at least \(k \).

Theorem 14 is sharp for \(n \) divisible by \(k - 1 \): Let \(G_1 \) be a disjoint union of \(K_{k-1} \)s.

Theorem 15 is sharp for \(n' - 1 \) divisible by \(k' - 2 \): Let \(G_2 \) be obtained from a disjoint union of \(K_{k'-2} \)s by adding an all-adjacent vertex.
Erdős–Gallai Theorems, II

Theorem 14 [Erdős and Gallai, 1959]: Let \(n \geq k \geq 2 \) and \(G \) be an \(n \)-vertex graph with more than \(\frac{1}{2}(k - 2)n \) edges. Then \(G \) contains a \(k \)-vertex path \(P_k \).

Theorem 15 [Erdős and Gallai, 1959]: Let \(n' \geq k' \geq 3 \) and \(G \) be an \(n' \)-vertex graph with more than \(\frac{1}{2}(k' - 1)(n' - 1) \) edges. Then \(G \) contains a cycle of length at least \(k \).

Theorem 14 is sharp for \(n \) divisible by \(k - 1 \): Let \(G_1 \) be a disjoint union of \(K_{k-1} \)'s.

Theorem 15 is sharp for \(n' - 1 \) divisible by \(k' - 2 \): Let \(G_2 \) be obtained from a disjoint union of \(K_{k'-2} \)'s by adding an all-adjacent vertex.

Erdős and Gallai also gave an exact upper bound on \(e(G) \) of a connected \(n \)-vertex graph \(G \) with no \(k \)-vertex path for even \(k \) and \(n \geq \frac{k^2}{4} - k + 7 \). Moreover, they also described the extremal graphs.
Theorems 14 and 15 were refined:

1. Faudree and Schelp and independently Kopylov found the exact value of $\text{ex}(n, P_k)$ for all pairs (n, k). Moreover, Faudree and Schelp described all extremal examples.

2. Woodall found the exact values for Theorem 15 for all pairs (n', k'). Moreover, he has extended the Erdős-Gallai theorem on paths in connected graphs to all $n \geq 3k/2$ and has found the exact maximum number of edges in n'-vertex 2-connected graphs with no cycles of length at least k' for $n' \geq 3k'/2$. Voss also announced part of these results.

3. Kopylov fixed all the four problems for all values of n, k, n' and k'.
A construction

Let \(n \geq k, \frac{k}{2} > a \geq 1 \). Define the \(n \)-vertex \(H_{n,k,a} \):

\[
V(H_{n,k,a}) = A \cup B \cup C, \text{ where } |A| = a, |B| = n - k + a, |C| = k - 2a.
\]

\[H_{n,k,a}[A \cup C] = K_{k-a}, \quad H_{n,k,a}[A \cup B] = K_{n-k+2a} - E(K_{n-k+a})\]

and no edges between \(B \) and \(C \).

Figure: Graph \(H_{11,11,3} \).

Let

\[h(n, k, a) = e(H_{n,k,a}) = \binom{k-a}{2} + a(n - k + a).\]
Kopylov’s Theorem

Theorem 16 [Kopylov, 1977] Let $n \geq k \geq 5$ and $t = \lfloor \frac{k-1}{2} \rfloor$. If G is an n-vertex 2-connected graph with no cycle of length at least k, then

$$e(G) \leq \max\{h(n, k, 2), h(n, k, t)\}$$

(1)

with equality only if $G = H_{n,k,2}$ or $G = H_{n,k,t}$.

All three other results (exact forms of Theorems 14 and 15 and the exact bound for paths in connected graphs) follow from this theorem.
Theorem 17 [Füredi, A. K., and Verstraëte] Let $t \geq 2$ and $n \geq 3t$ and $k \in \{2t + 1, 2t + 2\}$. Let G be a 2-connected n-vertex graph containing no cycle of length at least k. Then

$$e(G) \leq h(n, k, t - 1)$$

unless

(a) $k = 2t + 1$, $k \neq 7$, and $G \subseteq H_{n,k,t}$

or

(b) $k = 2t + 2$ or $k = 7$, and $G - A$ is a star forest for some $A \subseteq V(G)$ of size at most t.
Theorem 17 [Füredi, A. K., and Verstraëte] Let $t \geq 2$ and $n \geq 3t$ and $k \in \{2t + 1, 2t + 2\}$. Let G be a 2-connected n-vertex graph containing no cycle of length at least k. Then $e(G) \leq h(n, k, t - 1)$ unless

(a) $k = 2t + 1$, $k \neq 7$, and $G \subseteq H_{n,k,t}$ or
(b) $k = 2t + 2$ or $k = 7$, and $G - A$ is a star forest for some $A \subset V(G)$ of size at most t.

The condition $e(G) > h(n, k, t - 1)$ is best possible, since $H_{n,k,t-1}$ contains no cycle of length at least k, is not a subgraph of $H_{n,k,t}$, and $H_{n,2t+2,t-1} - A$ has a cycle for every $A \subset V(H_{n,2t+2,t-1})$ with $|A| = t$.
Since
\[h(n, 2t + 2, t) = \binom{t}{2} + t(n - t) + 1 = h(n, 2t + 1, t) + 1 \]
and
\[h(n, 2t + 2, t - 1) = \binom{t}{2} + (t-1)(n-t) + 6 = h(n, 2t + 1, t - 1) + 3, \]
the difference between Kopylov’s bound and the bound in Theorem 17 is
\[h(n, k, t) - h(n, k, t - 1) = \begin{cases} n - t - 3 & \text{if } k = 2t + 1 \\ n - t - 5 & \text{if } k = 2t + 2. \end{cases} \] (2)

So, for a fixed \(k \), the difference in (2) divided by \(h(n, k, t) \) does not tend to 0 when \(n \to \infty \).
Paths

Similarly to deducing Theorem 14 from Theorem 15, Theorem 17 yields:

Theorem 18 [Füredi, A. K., and Verstraëte]
Let $t \geq 2$ and $n \geq 3t - 1$ and $k \in \{2t, 2t + 1\}$, and let G be a connected n-vertex graph containing no k-vertex path. Then $e(G) \leq h(n, k - 1, t - 2)$ unless

(a) $k = 2t$, $k \neq 6$, and $G \subseteq H_{n,k-1,t-1}$ or
(b) $k = 2t + 1$ or $k = 6$, and $G - A$ is a star forest for some $A \subset V(G)$ of size at most $t - 1$.

Proof: Let G' be obtained from an n-vertex connected G with $e(G) > h(n, k - 1, t - 2)$ by adding an all-adjacent v. Then G' is 2-connected and $e(G') > h(n, k - 1, t - 2) + n = h(n + 1, k + 1, t - 1)$. So, we can apply Theorem 17 to G'.
Similarly to deducing Theorem 14 from Theorem 15, Theorem 17 yields:

Theorem 18 [Füredi, A. K., and Verstraëte]

Let \(t \geq 2 \) and \(n \geq 3t - 1 \) and \(k \in \{2t, 2t + 1\} \), and let \(G \) be a connected \(n \)-vertex graph containing no \(k \)-vertex path. Then \(e(G) \leq h(n, k - 1, t - 2) \) unless

(a) \(k = 2t, k \neq 6 \), and \(G \subseteq H_{n,k-1,t-1} \) or

(b) \(k = 2t + 1 \) or \(k = 6 \), and \(G - A \) is a star forest for some \(A \subset V(G) \) of size at most \(t - 1 \).

Proof: Let \(G' \) be obtained from an \(n \)-vertex connected \(G \) with \(e(G) > h(n, k - 1, t - 2) \) by adding an all-adjacent \(v \). Then \(G' \) is 2-connected and

\[e(G') > h(n, k - 1, t - 2) + n = h(n + 1, k + 1, t - 1). \]

So, we can apply Theorem 17 to \(G' \).
Some graph classes

Let $G_1(n, k) = \{H_{n,k,t}\}$. Each $G \in G_2(n, k)$ is defined by a partition $V(G) = A \cup B \cup J$, $|A| = t$ and a pair $a_1 \in A$, $b_1 \in B$ such that $G[A] = K_t$, $G(A, B)$ is a complete bipartite graph and for every $c \in J$ one has $N(c) = \{a_1, b_1\}$. Every member of $G \in G_3(n, k)$ is defined by a partition $V(G) = A \cup B \cup J$, $|A| = t$ such that $G[A] = K_t$, $G(A, B)$ is a complete bipartite graph, and

- $G[J]$ has more than one component;
- each component of $G[J]$ is a star with at least two vertices;
- there is a 2-element subset A' of A such that $N(J) \cap (A \cup B) = A'$;
- for each component S of $G[J]$ with at least 3 vertices, all leaves of S are adjacent to the same vertex $a(S) \in A'$.
The class $G_4(n, k)$ is empty unless $k = 10$. Each member of $G_4(n, 10)$ has a 3-vertex set A such that $G[A] = K_3$ and $G - A$ is a star forest such that if a component S of $G - A$ has more than two vertices then all its leaves are adjacent to the same vertex $a(S) \in A$.

Classes $G_2(n, k), G_3(n, k)$ and $G_4(n, 10)$.
Theorem 19 Let $k \geq 9$, $n \geq \frac{3k}{2}$ and $t = \left\lfloor \frac{k-1}{2} \right\rfloor$. Let G be an n-vertex 2-connected graph with no cycle of length at least k. Then $e(G) \leq h(n, k, t - 1)$ or G is a subgraph of a graph in $\mathcal{G}(n, k)$, where

1. if k is odd, then $\mathcal{G}(n, k) = \mathcal{G}_1(n, k) = \{H_{n,k,t}\}$;
2. if k is even and $k \neq 10$, then $\mathcal{G}(n, k) = \mathcal{G}_1(n, k) \cup \mathcal{G}_2(n, k) \cup \mathcal{G}_3(n, k)$;
3. if $k = 10$, then $\mathcal{G}(n, k) = \mathcal{G}_1(n, 10) \cup \mathcal{G}_2(n, 10) \cup \mathcal{G}_3(n, 10) \cup \mathcal{G}_4(n, 10)$.
We use contractions. A simple observation: If $c(G) < k$, then for any G' obtained from G by contracting an edge, $c(G') < k$.

Lemma 20: Let $n \geq 4$ and let G be an n-vertex 2-connected graph. Let $v \in V(G)$. Then there is $w \in N(v)$ such that G_{vw} is 2-connected.

Roughly speaking, for $n > 3k/2$, we start from an n-vertex G with $e(G) > h(n, k, t-1)$ and contract edges keeping 2-connectedness and decreasing the number of edges by at most $t-1$ at each step. We stop when either each edge is in many triangles or the number of vertices becomes k. Then we find a special structure in the resulting graph G_m and show that after uncontracting edges we still find a suitable subgraph in the original G. Finally, we show that each n-vertex G without long cycles but with $e(G) > h(n, k, t-1)$ containing special subgraphs satisfies the theorem.
We use contractions. A simple observation: If $c(G) < k$, then for any G' obtained from G by contracting an edge, $c(G') < k$.

Lemma 20: Let $n \geq 4$ and let G be an n-vertex 2-connected graph. Let $v \in V(G)$. Then there is $w \in N(v)$ such that G/vw is 2-connected.
We use contractions. A simple observation: If $c(G) < k$, then for any G' obtained from G by contracting an edge, $c(G') < k$.

Lemma 20: Let $n \geq 4$ and let G be an n-vertex 2-connected graph. Let $v \in V(G)$. Then there is $w \in N(v)$ such that G/vw is 2-connected.

Roughly speaking, for $n > 3k/2$, we start from an n-vertex G with $e(G) > h(n, k, t - 1)$ and contract edges keeping 2-connectedness and decreasing the number of edges by at most $t - 1$ at each step. We stop when either each edge is in many triangles or the number of vertices becomes k. Then we find a special structure in the resulting graph G_m and show that after uncontracting edges we still find a suitable subgraph in the original G. Finally, we show that each n-vertex G without long cycles but with $e(G) > h(n, k, t - 1)$ containing special subgraphs satisfies the theorem.
Small n

Theorem 21 [Füredi, A. K., Luo, and Verstraëte]
Let $t \geq 4$, $k \in \{2t + 1, 2t + 2\}$ and $n \geq k$. Let G be a 2-connected n-vertex graph containing no cycle of length at least k. Then $e(G) \leq \max\{h(n, k, t-1), h(n, k, 3)\}$ unless

(a) $k = 2t + 1$ and $G \subseteq H_{n,k,t}$ or $G \subseteq H_{n,k,2}$ or

(b) $k = 2t + 2$ and $G - A$ is a star forest for some $A \subset V(G)$ of size at most t.

The idea is to prove first the case $n \leq 3k/2$: we try to contract edges as above, and if we come to a graph with few edges, then we return to the start and do Kopylov's disintegration with a special order of disintegrated vertices. When the case $n \leq 3k/2$ is resolved, we use a simple induction for larger n.

Theorem 21 [Füredi, A. K., Luo, and Verstraëte]
Let $t \geq 4$, $k \in \{2t + 1, 2t + 2\}$ and $n \geq k$. Let G be a 2-connected n-vertex graph containing no cycle of length at least k. Then $e(G) \leq \max\{h(n, k, t - 1), h(n, k, 3)\}$ unless

(a) $k = 2t + 1$ and $G \subseteq H_{n,k,t}$ or $G \subseteq H_{n,k,2}$ or
(b) $k = 2t + 2$ and $G - A$ is a star forest for some $A \subset V(G)$ of size at most t.

The idea is to prove first the case $n \leq 3k/2$: we try to contract edges as above, and if we come to a graph with few edges, then we return to the start and do Kopylov’s disintegration with a special order of disintegrated vertices. When the case $n \leq 3k/2$ is resolved, we use a simple induction for larger n.